Section 14.5 1/0 Multiplexing 477

Any (or all) of the middle three arguments to select (the pointers to the descriptor
sets) can be null pointers if we're not interested in that condition. If all three pointers
are NULL, then we have a higher precision timer than provided by sleep. (Recall from
Section 10.19 that sleep waits for an integral number of seconds. With select, we
can wait for intervals less than 1 second; the actual resolution depends on the system’s
clock.) Exercise 14.6 shows such a function.

The first argument to select, maxfdpl, stands for “maximum file descriptor plus
1.” We calculate the highest descriptor that we're interested in, considering all three of
the descriptor sets, add 1, and that’s the first argument. We could just set the first
argument to FD_SETSIZE, a constant in <sys/select.h> that specifies the maximum
number of descriptors (often 1,024), but this value is too large for most applications.
Indeed, most applications probably use between 3 and 10 descriptors. (Some
applications need many more descriptors; but these UNIX programs are atypical.) By
specifying the highest descriptor that we're interested in, we can prevent the kernel
from going through hundreds of unused bits in the three descriptor sets, looking for bits
that are turned on.

As an example, Figure 14.24 shows what two descriptor sets look like if we write

fd_set readset, writeset;

FD_ZERO (&readset) ;

FD_ZERO (&writeset);

FD_SET(0, &readset);

FD_SET (3, &readset);

FD_SET(1, &writeset);

FD SET(2, &writeset);

select (4, &readset, &writeset, NULL, NULL);

The reason we have to add 1 to the maximum descriptor number is that descriptors
start at 0, and the first argument is really a count of the number of descriptors to check
(starting with descriptor 0).

fdo fd1 fd2 fd3

readset: 1 o] 0

writeset: 0 1 1

maxfdpl = 4

Figure 14.24 Example descriptor sets for select

There are three possible return values from select.

1. A return value of -1 means that an error occurred. This can happen, for
example, if a signal is caught before any of the specified descriptors are ready.
In this case, none of the descriptor sets will be modified.

478 Advanced 1/0O Chapter 14

2. A return value of 0 means that no descriptors are ready. This happens if the
time limit expires before any of the descriptors are ready. When this happens,
all the descriptor sets will be zeroed out.

3." A positive return value specifies the number of descriptors that are ready. This
value is the sum of the descriptors ready in all three sets, so if the same
descriptor is ready to be read and written, it will be counted twice in the return
value. The only bits left on in the three descriptor sets are the bits
corresponding to the descriptors that are ready.

We now need to be more specific about what “ready” means.

* A descriptor in the read set (readfds) is considered ready if a read from that
descriptor won't block.

® A descriptor in the write set (writefds) is considered ready if a write to that
descriptor won’t block.

* A descriptor in the exception set (exceptfds) is considered ready if an exception
condition is pending on that descriptor. Currently, an exception condition
corresponds to either the arrival of out-of-band data on a network connection or
certain conditions occurring on a pseudo terminal that has been placed into
packet mode. (Section 15.10 of Stevens [1990] describes this latter condition.)

* File descriptors for regular files always return ready for reading, writing, and
exception conditions.

It is important to realize that whether a descriptor is blocking or not doesn’t affect
whether select blocks. That is, if we have a nonblocking descriptor that we want to
read from and we call select with a timeout value of 5 seconds, select will block for
up to 5 seconds. Similarly, if we specify an infinite timeout, select blocks until data is
ready for the descriptor or until a signal is caught.

If we encounter the end of file on a descriptor, that descriptor is considered readable
by select. We then call read and it returns 0, the way to signify end of file on UNIX
systems. (Many people incorrectly assume that select mdxcates an exception
condition on a descriptor when the end of file is reached.)

POSIX.1 also defines a variant of select called pselect.

#include <sys/select.h>

int pselect (int maxfdpl, £d_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict exceptfds,
const struct timespec *restrict tsptr,
const sigset_t *restrict sigmask) ;

Returns: count of ready descriptors, 0 on timeout, -1 on error

The pselect function is identical to select, with the following exceptions.

* The timeout value for select is specified by a timeval structure, but for
pselect, a timespec structure is used. (Recall the definition of the t imespec
structure in Section 11.6.) Instead of seconds and microseconds, the timespec

Section 14.5 I/O Multiplexing 479

structure represents the timeout value in seconds and nanoseconds. This
provides a higher-resolution timeout if the platform supports that fine a level of
granularity.

¢ The timeout value for pselect is declared const, and we are guaranteed that
its value will not change as a result of calling pselect.

¢ An optional signal mask argument is available with pselect. If sigmask is null,
pselect behaves as select does with respect to signals. Otherwise, sigmask
points to a signal mask that is atomically installed when pselect is called. On
return, the previous signal mask is restored.

14.5.2 poll Function

The poll function is similar to select, but the programmer interface is different. As
we'll see, poll is tied to the STREAMS system, since it originated with System YV,
although we are able to use it with any type of file descriptor.

#include <poll.h>

int poll(struct pollfd fdarray(l, nfds_t nfds, int timeout) ;

Returns: count of ready descriptors, 0 on timeout, -1 on error

With poll, instead of building a set of descriptors for each condition (readability,
writability, and exception condition), as we did with select, we build an array of
pollfd structures, with each array element specifying a descriptor number and the
conditions that we're interested in for that descriptor:

struct pollfd {

int fd; /* file descriptor to check, or <0 to ignore */
short events; /* events of interest on fd */
short revents; /* events that occurred on fd */

}i
The number of elements in the fdarray array is specified by nfds.

Historically, there have been differences in how the nfis parameter was declared. SVR3
specified the number of elements in the array as an unsigned long, which seems excessive.
In the SVR4 manual [AT&T 1990d], the prototype for pol1l showed the data type of the second
argument as size_t. (Recall the primitive system data types, Figure 2.20.) But the actual
prototype in the <poll.h> header still showed the second argument as an unsigned long.
The Single UNIX Specification defines the new type nfds_t to allow the implementation to
select the appropriate type and hide the details from applications. Note that this type has to be
large enough to hold an integer, since the return value represents the number of entries in the
array with satisfied events.

The SVID corresponding to SVR4 [AT&T 1989] showed the first argument to poll as struct
pollfd fdarray (], whereas the SVR4 manual page [AT&T 1990d] showed this argument as
struct pollfd *fdarray. In the C language, both declarations are equivalent. We use the
first declaration to reiterate that fdarray points to an array of structutes and not a pointer to
a single structure.

480 Advanced 1/0 Chapter 14

To tell the kernel what events we’re interested in for each descriptor, we have to set
the events member of each array element to one or more of the values in Figure 14.25.
On return, the revents member is set by the kernel, specifying which events have
occurred for each descriptor. (Note that poll doesn’t change the events member.
This differs from select, which modifies its arguments to indicate what is ready.)

Input to | Result from i
Name p Description

events? | revents?

POLLIN . . Data other than high priority can be read without blocking
. (equivalent to POLLRDNORM | POLLRDBAND).

POLLRDNORM . . Normal data (priority band 0) can be read without blocking.
POLLRDBAND . d Data from a nonzero priority band can be read without blocking.
POLLPRI . . High-priority data can be read without blocking.
POLLOUT . . Normal data can be written without blocking.
POLLWRNORM o . Same as POLLOUT.
POLLWRBAND . . . Data for a nonzero priority band can be written without blocking.
POLLERR . An error has occurred.
POLLHUP o A hangup has occurred.
POLLNVAL . The descriptor does not reference an open file.

Figure 14.25 The events and revents flags for poll

The first four rows of Figure 14.25 test for readability, the next three test for
writability, and the final three are for exception conditions. The last three rows in
Figure 14.25 are set by the kernel on return. These three values are returned in
revents when the condition occurs, even if they weren’t specified in the events field.

When a descriptor is hung up (POLLHUP), we can no longer write to the descriptor.
There may, however, still be data to be read from the descriptor.

The final argument to pol1l specifies how long we want to wait. As with select,
there are three cases.

timeout == -1
Wait forever. (Some systems define the constant INFTIM in <stropts.h> as

—1.) We return when one of the specified descriptors is ready or when a signal
is caught. If a signal is caught, pol1 returns —1 with errno set to EINTR.

timeout ==
Don’t wait. All the specified descriptors are tested, and we return immediately.

This is a way to poll the system to find out the status of multiple descriptors,
without blocking in the call to pol1.

timeout > 0

Wait timeout milliseconds. We return when one of the specified descriptors is
ready or when the timeout expires. If the timeout expires before any of the
descriptors is ready, the return value is 0. (If your system doesn’t provide
millisecond resolution, timeout is rounded up to the nearest supported value.)

It is important to realize the difference between an end of file and a hangup. If
we're entering data from the terminal and type the end-of-file character, POLLIN is

Section 14.6 Asynchronous I/0 481

turned on so we can read the end-of-file indication (read returns 0). POLLHUP is not
turned on in revents. If we're reading from a modem and the telephone line is hung
up, we'll receive the POLLHUP notification. ,

As with select, whether a descriptor is blocking or not doesn’t affect whether

pol1l blocks.

interruptibility of select and poll

14.6

When the automatic restarting of interrupted system calls was introduced with 4.2BSD
(Section 10.5), the select function was never restarted. This characteristic continues
with most systems even if the SA_RESTART option is specified. But under SVR4, if
SA_RESTART was specified, even select and poll were automatically restarted. To
prevent this from catching us when we port software to systems derived from SVR4,
we’ll always use the signal_intr function (Figure 10.19) if the signal could interrupt
acalltoselect orpoll.

None of the implementations described in this book restart poll or select when a signal is
received, even if the SA_RESTART flag is used.

Asynchronous 1/O

Using select and poll, as described in the previous section, is a synchronous form of
notification. The system doesn’t tell us anything until we ask (by calling either select
or poll). As we saw in Chapter 10, signals provide an asynchronous form of
notification that something has happened. All systems derived from BSD and System V
provide some form of asynchronous 1/0, using a signal (SIGPOLL in System V; SIGIO
in BSD) to notify the process that something of interest has happened on a descriptor.

We saw that select and poll work with any descriptors. But with asynchronous 1/0, we
now encounter restrictions. On systems derived from System V, asynchronous I/0 works only
with STREAMS devices and STREAMS pipes. On systems derived from BSD, asynchronous
/0 works only with terminals and networks.

One limitation of asynchronous 1/O is that there is only one signal per process. If
we enable more than one descriptor for asynchronous [/O, we cannot tell which
descriptor the signal corresponds to when the signal is delivered.

The Single UNIX Specification includes an optional generic asynchronous 1/0O mechanism,
adopted from the real-time draft standard. It is unrelated to the mechanisms we describe here.
This mechanism solves a lot of the limitations that exjst with these older asynchronous 1/O
mechanisms, but we will not discuss it further.

14.6.1 System V Asynchronous /O

In System V, asynchronous 1/0 is part of the STREAMS system and works only with
STREAMS devices and STREAMS pipes. The System V asynchronous 1/0 signal is
SIGPOLL.

482 Advanced 1/0 Chapter 14

To enable asynchronous I/0 for a STREAMS device, we have to call ioct1 with a
second argument (request) of I_SETSIG. The third argument is an integer value formed
from one or more of the constants in Figure 14.26. These constants are defined in
<stropts.hs.

Constant Description

S_INPUT A message other than a high-priority message has arrived.

S_RDNORM An ordinary message has arrived.

S_RDBAND A message with a nonzero priority band has arrived.

S_BANDURG | If this constant is specified with S_RDBAND, the SIGURG signal is generated
instead of SIGPOLL when a nonzero priority band message has arrived.
S_HIPRI A high-priority message has arrived.

S_OUTPUT The write queue is no longer full.
S_WRNORM | SameasS_OUTPUT.
S_WRBAND We can send a nonzero priority band message.

S_MSG A STREAMS signal message that contains the SIGPOLL signal has arrived.
S_ERROR AnM_ERROR message has arrived.
S_HANGUP An M_HANGUP message has arrived.

Figure 14.26 Conditions for generating SIGPOLL signal

In Figure 14.26, whenever we say “has arrived,” we mean “has arrived at the stream
head’s read queue.”

In addition to calling ioctl to specify the conditions that should generate the
SIGPOLL signal, we also have to establish a signal handler for this signal. Recall from
Figure 10.1 that the default action for SIGPOLL is to terminate the process, so we should
establish the signal handler before calling ioct1.

14.6.2 BSD Asynchronous /0

Asynchronous I/0 in BSD-derived systems is a combination of two signals: SIGIO and
SIGURG. The former is the general asynchronous 1/0 signal, and the latter is used only
to notify the process that out-of-band data has arrived on a network connection.

To receive the SIGIO signal, we need to perform three steps.

1. Establish a signal handler for SIGI0, by calling either signal or sigaction.

2. Set the process ID or process group ID to receive the signal for the descriptor, by
calling fcnt1 with a command of F_SETOWN (Section 3.14).

3. Enable asynchronous I/O on the descriptor by calling fcnt1 with a command
of F_SETFL to set the O_ASYNC file status flag (Figure 3.9).

Step 3 can be performed only on descriptors that refer to terminals or networks, which
is a fundamental limitation of the BSD asynchronous I/O facility.

For the SIGURG signal, we need perform only steps 1 and 2. SIGURG is generated
only for descriptors that refer to network connections that support out-of-band data.

Section 14.7 ' readv and writev Functions 483

14.7 readv and writev Functions

The readv and writev functions let us read into and write from multiple
noncontiguous buffers in a single function call. These operations are called scatter read
and gather write.

#include <sys/uio.h>
ssize_t readv(int filedes, const struct iovec *iov, int iovcnt) ;

ssize t writev(int filedes, const struct iovec *iov, int iovent) ;

Both return: number of bytes read or written, —1 on error

The second argument to both functions is a pointer to an array of iovec structures:

struct iovec {
void *iov base; /* starting address of buffer */
size_t iov_len; /* size of buffer */

}i

The number of elements in the iov array is specified by iovcnt. It is limited to IOV_MAX
(Recall Figure 2.10). Figure 14.27 shows a picture relating the arguments to these two
functions and the iovec structure.

iov[0] .iov_base ————»{ buffer0 4]

iov{0] .iov_len len0 jt—— len0 ——m
iov[1] .iov_base —

- \-bi bufferl
iov{1] .iov_len lenl

jt— lenl —m

iov [fovcnt-1} . iov_base >{ bufferl

iov [iovcnt-1] .iov_len len! j——— len] ———]

Figure 14.27 The iovec structure for readv and writev

The writev function gathers the output data from the buffers in order: iov[0], iov[1],
through iov[iovent-1]; writev returns the total number of bytes output, which should
normally equal the sum of all the buffer lengths. ‘

The readv function scatters the data into the buffers in order, always filling one
buffer before proceeding to the next. readv returns the total number of bytes that were
read. A count of 0 is returned if there is no more data and the end of file is encountered.

These two functions originated in 4.2BSD and were later added to SVR4. These two functions
are included in the XSI extension of the Single UNIX Specification.

Although the Single UNIX Specification defines the buffer address to be a void *, many
implementations that predate the standard still use a char * instead.

484 Advanced 1/0 Chapter 14

Example

In Section 20.8, in the function db writeidx, we need to write two buffers
consecutively to a file. The second buffer to output is an argument passed by the caller,
and the first buffer is one we create, containing the length of the second buffer and a file
offset of other information in the file. There are three ways we can do this.

1. Call write twice, once for each buffer.

2. Allocate a buffer of our own that is large enough to contain both buffers, and
copy both into the new buffer. We then call write once for this new buffer.

3. Call writev to output both buffers.
The solution we use in Section 20.8 is to use writev, but it’s instructive to compare it to

the other two solutions.
Figure 14.28 shows the results from the three methods just described.

Linux (Intel x86) Mac OS X (PowerPC)
Operation User System | Clock User | System | Clock
twowrites 1.29 3.15 7.39 1.60 17.40 19.84
buffer copy, then one write 1.03 1.98 6.47 1.10 11.09 12.54
onewritev 0.70 272 6.41 0.86 13.58 14.72

Figure 14.28 Timing results comparing writev and other techniques

The test program that we measured output a 100-byte header followed by 200 bytes of
data. This was done 1,048,576 times, generating a 300-megabyte file. The test program
has three separate cases—one for each of the techniques measured in Figure 14.28. We
used times (Section 8.16) to obtain the user CPU time, system CPU time, and wall
clock time before and after the writes. All three times are shown in seconds.

As we expect, the system time increases when we call write twice, compared to
calling either write or writev once. This correlates with the results in Figure 3.5.

Next, note that the sum of the CPU times (user plus system) is less when we do a
buffer copy followed by a single write compared to a single call to writev. With the
single write, we copy the buffers to a staging buffer at user level, and then the kernel
will copy the data to its internal buffers when we call write. With writev, we should
do less copying, because the kernel only needs to copy the data directly into its staging
buffers. The fixed cost of using writev for such small amounts of data, however, is
greater than the benefit. As the amount of data we need to copy increases, the more
expensive it will be to copy the buffers in our program, and the writev alternative will
be more attractive.

Be careful not to infer too much about the relative performance of Linux to Mac OS X from the
numbers shown in Figure 14.28. The two computers were very different: they had different
processor architectures, different amounts of RAM, and disks with different speeds. To do an
apples-to-apples comparison of one operating system to another, we need to use the same
hardware for each operating system.

0

Section 14.8 readn and writen Functions 485

14.8

In summary, we should always try to use the fewest number of system calls
necessary to get the job done. If we are writing small amounts of data, we will find it
less expensive to copy the data ourselves and use a single write instead of using
writev. We might find, however, that the performance benefits aren’t worth the extra
complexity cost needed to manage our own staging buffers.

readn and writen Functions

Pipes, FIFOs, and some devices, notably terminals, networks, and STREAMS devices,
have the following two properties.

1. A read operation may return less than asked for, even though we have not
encountered the end of file. This is not an error, and we should simply continue
reading from the device.

2. A write operation can also return less than we specified. This may be caused
by flow control constraints by downstream modules, for example. Again, it’s
not an error, and we should continue writing the remainder of the data.
(Normally, this short return from a write occurs only with a nonblocking
descriptor or if a signal is caught.)

We'll never see this happen when reading or writing a disk file, except when the file
system runs out of space or we hit our quota limit and we can’t write all that we
requested.

Generally, when we read from or write to a pipe, network device, or terminal, we
need to take these characteristics into consideration. We can use the following two
functions to read or write N bytes of data, letting these functions handle a possible
return value that’s less than requested. These two functions simply call read or write
as many times as required to read or write the entire N bytes of data.

#include "apue.h"
ssize t readn(int filedes, void *buf, size_t nbytes);

ssize_t writen(int filedes, void *buf, size_t nbytes) ;

Both return: number of bytes read or written, -1 on error

We define these functions as a convenience for later examples, similar to the error-handling
routines used in many of the examples in this text. The readn and writen functions are not
part of any standard.

We call writen whenever we're writing to one of the file types that we mentioned,
but we call readn only when we know ahead of time that we will be receiving a certain
number of bytes. Figure 14.29 shows implementations of readn and writen that we
will use in later examples.

Note that if we encounter an error and have previously read or written any data, we
return the amount of data transferred instead of the error. Similarly, if we reach end of

486 Advanced I/0 Chapter 14

file while reading, we return the number of bytes copied to the caller’s buffer if we
already read some data successfully and have not yet satisfied the amount requested.

#include "apue.h"

ssize_t /* Read "n" bytes from a descriptor */
readn(int fd, void *ptr, size_t n)
{

size_t nleft;

ssize_t nread;

nleft = n;

while (nleft > 0) {
if ((nread = read(fd, ptr, nleft)) < 0) {

if (nleft == n)
return(-1); /* error, return -1 */
else
break; /* error, return amount read so far */
} else if (nread == 0) {
break; /* EQOF */
}
nleft -= nread;

ptr += nread;

}

return(n - nleft); /* return >= 0 */
}
ssize_t /* Write "n" bytes to a descriptor */
writen(int fd, const void *ptr, size t n)
{
size t nleft;
ssize_t nwritten;
nleft = n;
while (nleft > 0)
if ((nwritten = write(fd, ptr, nleft)) < 0) {
if (nleft == n)
return(-1); /* error, return -1 */
else
break; /* error, return amount written so far */
} else if (nwritten == 0) {
break;
}
nleft -= nwritten;
ptr += nwritten;
}
return(n - nleft); /* return >= 0 */
}

Figure 14.29 The readn and writen functions

Section 14.9 Memory-Mapped I/O 487

14.9 Memory-Mapped 1/O

Memory-mapped I/0O lets us map a file on disk into a buffer in memory so that, when
we fetch bytes from the buffer, the corresponding bytes of the file are read. Similarly,
when we store data in the buffer, the corresponding bytes are automatically written to
the file. This lets us perform I/O without using read or write.

Memory-mapped 1/0 has been in use with virtual memory systems for many years. In 1981,
4.1BSD provided a different form of memory-mapped 1/O with its vread and vwrite
functions. These two functions were then removed in 4.2BSD and were intended to be
replaced with the mmap function. The mmap function, however, was not included with 4.2BSD
(for reasons described in Section 2.5 of McKusick et al. [1996]). Gingell, Moran, and Shannon
[1987] describe one implementation of mmap. The mmap function is included in the
memory-mapped files option in the Single UNIX Specification and is required on all
XSl-conforming systems; most UNIX systems support it.

To use this feature, we have to tell the kernel to map a given file to a region in
memory. This is done by the mmap function.

#include <sys/mman.h>

void *mmap (void *addr, size_t len, int prot, int flag, int filedes,
off_t off);

Returns: starting address of mapped region if OK, MAP_FAILED on error

The addr argument lets us specify the address of where we want the mapped region
to start. We normally set this to 0 to allow the system to choose the starting address.
The return value of this function is the starting address of the mapped area.

The filedes argument is the file descriptor specifying the file that is to be mapped.
We have to open this file before we can map it into the address space. The len argument
is the number of bytes to map, and off is the starting offset in the file of the bytes to map.
(Some restrictions on the value of off are described later.)

The prot argument specifies the protection of the mapped region.

prot Description

PROT_READ Region can be read.
PROT_WRITE | Region can be written.
PROT_EXEC Region can be executed.
PROT_NONE Region cannot be accessed.

Figure 14.30 Protection of memory-mapped region

We can specify the protection as either PROT_NONE or the bitwise OR of any
combination of PROT_READ, PROT_WRITE, and PROT_EXEC. The protection specified
for a region can't allow more access than the open mode of the file. For example, we
can’t specify PROT_WRITE if the file was opened read-only.

Before looking at the flag argument, let’s see what's going on here. Figure 14.31
shows a memory-mapped file. (Recall the memory layout of a typical process,

488 Advanced 1/0

Chapter 14

high address

start addr

memory-mapped

portion of file \

uninitialized data

(bss)

initialized data

low address

text

R aePRN

en

Figure 14.31 Example of a memory-mapped file

Figure 7.6.) In this figure, “start addr” is the return value from mmap. We have shown
the mapped memory being somewhere between the heap and the stack: this is an
implementation detail and may differ from one implementation to the next.

The flag argument affects various attributes of the mapped region.

MAP_FIXED

MAP_SHARED

MAP_PRIVATE

The return value must equal addr. Use of this flag is discouraged,
as it hinders portability. If this flag is not specified and if addr is
nonzero, then the kernel uses addr as a hint of where to place the
mapped region, but there is no guarantee that the requested
address will be used. Maximum portability is obtained by
specifying addr as 0.

Support for the MAP_FIXED flag is optional on POSIX-conforming

systems, but required on XSI-conforming systems.

This flag describes the disposition of store operations into the
mapped region by this process. This flag specifies that store
operations modify the mapped file—that is, a store operation is
equivalent to a write to the file. Either this flag or the next
(MAP_PRIVATE), but not both, must be specified.

This flag says that store operations into the mapped region cause a
private copy of the mapped file to be created. All successive

Section 14.9 Memory-Mapped I/O 489

references to the mapped region then reference the copy. (One use
of this flag is for a debugger that maps the text portion of a
program file but allows the user to modify the instructions. Any
modifications affect the copy, not the original program file.)

Each implementation has additional MAP_xxx flag values, which are specific to that
implementation. Check the mmap(2) manual page on your system for details.

The value of off and the value of addr (if MAP_FIXED is specified) are required to be
multiples of the system’s virtual memory page size. This value can be obtained from
the sysconf function (Section 2.54) with an argument of _SC_PAGESIZE or
_SC_PAGE_SIZE. Since off and addr are often specified as 0, this requirement is not a
big deal.

Since the starting offset of the mapped file is tied to the system’s virtual memory
page size, what happens if the length of the mapped region isn’t a multiple of the page
size? Assume that the file size is 12 bytes and that the system’s page size is 512 bytes.
In this case, the system normally provides a mapped region of 512 bytes, and the final
500 bytes of this region are set to 0. We can modify the final 500 bytes, but any changes
we make to them are not reflected in the file. Thus, we cannot append to a file with
mmap. We must first grow the file, as we will see in Figure 14.32.

Two signals are normally used with mapped regions. SIGSEGV is the signal
normally used to indicate that we have tried to access memory that is not available to
us. This signal can also be generated if we try to store into a mapped region that we
specified to mmap as read-only. The SIGBUS signal can be generated if we access a
portion of the mapped region that does not make sense at the time of the access. For
example, assume that we map a file using the file’s size, but before we reference the
mapped region, the file’s size is truncated by some other process. If we then try to
access the memory-mapped region corresponding to the end portion of the file that was
truncated, we’ll receive SIGBUS.

A memory-mapped region is inherited by a child across a fork (since it’s part of
the parent’s address space), but for the same reason, is not inherited by the new
program across an exec.

We can change the permissions on an existing mapping by calling mprotect.

#include <sys/mman.h>
int mprotect (void *addr, size_t len, int prot);

Returns: 0 if OK, -1 on error

The legal values for prot are the same as those for mmap (Figure 14.30). The address
argument must be an integral multiple of the system’s page size.

The mprotect function is included as part of the memory protection option in the Single
UNIX Specification, but all XSI-conforming systems are required to support it.

If the pages in a shared mapping have been modified, we can call msync to flush
the changes to the file that backs the mapping. The msync function is similar to £sync
(Section 3.13), but works on memory-mapped regions.

490 Advanced I/O Chapter 14

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

Returns: 0 if OK, -1 on error

If the mapping is private, the file mapped is not modified. As with the other
memory-mapped functions, the address must be aligned on a page boundary.

The flags argument allows us some control over how the memory is flushed. We
can specify the MS_ASYNC flag to simply schedule the pages to be written. If we want
to wait for the writes to complete before returning, we can use the MS_SYNC flag. Either
MS_ASYNC or MS_ SYNC must be specified.

An optional flag, MS_INVALIDATE, lets us tell the operating system to discard any
pages that are out of sync with the underlying storage. Some implementations will
discard all pages in the specified range when we use this flag, but this behavior is not
required.

A memory-mapped region is automatically unmapped when the process terminates
or by calling munmap directly. Closing the file descriptor filedes does not unmap the
region.

#include <sys/mman.h>
int munmap (caddr_t addr, size_t len);

Returns: 0 if OK, —1 on error

munmap does not affect the object that was mapped—that is, the call to munmap does
not cause the contents of the mapped region to be written to the disk file. The updating
of the disk file for a MAP_SHARED region happens automatically by the kernel’s virtual
memory algorithm as we store into the memory-mapped region. Modifications to
memory in a MAP_PRIVATE region are discarded when the region is unmapped.

Example

The program in Figure 14.32 copies a file (similar to the cp(1) command) using
memory-mapped I/0.

#include "apue.h"
#include <fcntl.hs>
#include <sys/mman.h>

int

main(int argc, char *argv|[])
int fdin, fdout;
void *src, *dst;
struct stat statbuf;

if (arge != 3)

Section 14.9 Memory-Mapped [/0 491

err quit("usage: %s <fromfile> <tofile>", argv(0]);

if ((fdin = open(argv[1], O RDONLY)) < 0)
err_sys("can’t open %s for reading", argv[1l]);

if ((fdout = open(argv[2], O_RDWR | O_CREAT | O_TRUNC,
FILE MODE)) < 0)
err sys("can't creat %s for writing", argv(2]);

if (fstat (fdin, &statbuf) < 0) /* need size of input file */
err_sys("fstat error");

/* set size of output file */

if (lseek(fdout, statbuf.st size - 1, SEEK _SET) == -1)
err_sys("lseek error");
if (write(fdout, "", 1) != 1)

err_sys("write error");

if ((src = mmap(0, statbuf.st_size, PROT_READ, MAP_SHARED,
fdin, 0)) == MAP_ FAILED)
err_sys("mmap error for input") ;

if ((dst = mmap(0, statbuf.st_size, PROT_READ | PROT_WRITE,
MAP_ SHARED, fdout, 0)) == MAP_FAILED)
err sys("mmap error for output") ;

memcpy (dst, src, statbuf.st_size); /* does the file copy */
exit (0);

Figure 14.32 Copy a file using memory-mapped /O

We first open both files and then call fstat to obtain the size of the input file. We
need this size for the call to mmap for the input file, and we also need to set the size of
the output file. We call 1seek and then write one byte to set the size of the output file.
If we don’t set the output file’s size, the call to mmap for the output file is OK, but the
first reference to the associated memory region generates SIGBUS. We might be
tempted to use ftruncate to set the size of the output file, but not all systems extend
the size of a file with this function. (See Section 4.13.)

Extending a file with ftruncate works on the four platforms discussed in this text.

We then call mmap for each file, to map the file into memory, and finally call memcpy
to copy from the input buffer to the output buffer. As the bytes of data are fetched from
the input buffer (src), the input file is automatically read by the kernel; as the data is
stored in the output buffer (dst), the data is automatically written to the output file.

Exactly when the data is written to the file is dependent on the system’s page management
algorithms. Some systems have daemons that write dirty pages to disk slowly over time. If
we want to ensure that the data is safely written to the file, we need to call msync with the
MS_SYNC flag before exiting.

492

Advanced 1/0 Chapter 14

14.10

Let’s compare this memory-mapped file copy to a copy that is done by calling read
and write (with a buffer size of 8,192). Figure 14.33 shows the results. The times are
given in seconds, and the size of the file being copied was 300 megabytes.

Linux 2.4.22 (Intel x86) Solaris 9 (SPARC)
Operation User System | Clock User System | Clock

read/write 0.04 1.02 39.76 0.18 9.70 41.66
mmap/memcpy 0.64 1.31 24.26 1.68 7.94 28.53

Figure 14.33 Timing results comparing read/write versus mmap/memcpy

For Solaris 9, the total CPU time (user +system) is almost the same for both types of
copies: 9.88 seconds versus 9.62 seconds. For Linux 2.4.22, the total CPU time is almost
doubled when we use mmap and memcpy (1.06 seconds versus 1.95 seconds). The
difference is probably because the two systems implement process time accounting
differently.

As far as elapsed time is concerned, the version with mmap and memcpy is faster
than the version with read and write. This makes sense, because we're doing less
work with mmap and memcpy. With read and write, we copy the data from the
kernel’s buffer to the application’s buffer (read), and then copy the data from the
application’s buffer to the kernel’s buffer (write). With mmap and memcpy, we copy
the data directly from one kernel buffer mapped into our address space into another
kernel buffer mapped into our address space. O

Memory-mapped I/O is faster when copying one regular file to another. There are
limitations. We can’t use it to copy between certain devices (such as a network device
or a terminal device), and we have to be careful if the size of the underlying file could
change after we map it. Nevertheless, some applications can benefit from
memory-mapped I/O, as it can often simplify the algorithms, since we manipulate
memory instead of reading and writing a file. One example that can benefit from
memory-mapped 1/0 is the manipulation of a frame buffer device that references a
bit-mapped display.

Krieger, Stumm, and Unrau [1992] describe an alternative to the standard 1/0O
library (Chapter 5) that uses memory-mapped 1/0.

We return to memory-mapped 1/0 in Section 15.9, showing an example of how it
can be used to provide shared memory between related processes.

Summary

In this chapter, we’ve described numerous advanced I/O functions, most of which are
used in the examples in later chapters:
* Nonblocking I/O—issuing an 1/O operation without letting it block

* Record locking (which we'll look at in more detail through an example, the
database library in Chapter 20)

Chapter 14

Exercises 493

System V STREAMS (which we’ll need in Chapter 17 to underétand
STREAMS-based pipes, passing file descriptors, and System V client-server
connections)

1/0 multiplexing—the select and poll functions (we'll use these in many of
the later examples)

The readv and writev functions (also used in many of the later examples)

Memory-mapped I/O (mmap)

Exercises

14.1

14.2

14.3

144

14.5
14.6

14.7

14.8

14.9

Write a test program that illustrates your system’s behavior when a process is blocked
trying to write-lock a range of a file and additional read-lock requests are made. Is the
process requesting a write lock starved by the processes read-locking the file?

Take a look at your system’s headers and examine the implementation of select and the
four FD__ macros.

The system headers usually have a built-in limit on the maximum number of descriptors
that the £d_set data type can handle. Assume that we need to increase this limit to handle
up to 2,048 descriptors. How can we do this?

Compare the functions provided for signal sets (Section 10.11) and the £d_set descriptor
sets. Also compare the implementation of the two on your system.

How many types of information does getmsg return?

Implement the function sleep_us, which is similar to sleep, but waits for a specified
number of microseconds. Use either select or poll. Compare this function to the BSD
usleep function.

Can you implement the functions TELL_WAIT, TELL_PARENT, TELL_CHILD,
WAIT PARENT, and WAIT_CHILD from Figure 10.24 using advisory record locking instead
of signals? If so, code and test your implementation.

Determine the capacity of a pipe using nonblocking writes. Compare this value with the
value of PIPE_BUF from Chapter 2.

Recall Figure 14.28. Determine the break-even point on your system where using writev is
faster than copying the data yourself and using a single write.

14.10 Run the program in Figure 14.32 to copy a file and determine whether the last-access time

for the input file is updated.

14.11 In the program from Figure 1432, close the input file after calling mmap to verify that

closing the descriptor does not invalidate the memory-mapped 1/0.

15.1

15

Interprocess Communication

Introduction

In Chapter 8, we described the process control primitives and saw how to invoke
multiple processes. But the only way for these processes to exchange information is by
passing open files across a fork or an exec or through the file system. We'll now
describe other techniques for processes to communicate with each other: IPC, or
interprocess communication.

In the past, UNIX System IPC was a hodgepodge of various approaches, few of
which were portable across all UNIX system implementations. Through the POSIX and
The Open Group (formerly X/Open) standardization efforts, the situation has
improved, but differences still exist. Figure 15.1 summarizes the various.forms of IPC
that are supported by the four implementations discussed in this text.

Note that the Single UNIX Specification (the “SUS” column) allows an
implementation to support full-duplex pipes, but requires only half-duplex pipes. An
implementation that supports full-duplex pipes will still work with correctly written
applications that assume that the underlying operating system supports only
half-duplex pipes. We use “(full)” instead of a bullet to show implementations that
support half-duplex pipes by using full-duplex pipes.

In Figure 15.1, we show a bullet where basic functionality is supported. For
full-duplex pipes, if the feature can be provided through UNIX domain sockets
(Section 17.3), we show “UDS” in the column. Some implementations support the
feature with pipes and UNIX domain sockets, so these entries have both “UDS” and a
bullet.

As we mentioned in Section 14.4, support for STREAMS is optional in the Single
UNIX Specification. Named full-duplex pipes are provided as mounted
STREAMS-based pipes and so are also optional in the Single UNIX Specification. On

495

496 Interprocess Communication. Chapter 15
R A
| halt-duplex pipes . (full) . . (full)
FIFOs

| full-duplex pipes allowed ¢, UDS opt, UDS UDSs e, UDS
named full-duplex pipes | XSloption | UDS opt, UDS ubDs ¢, UDS

- message queues XSl . . o
semaphores XSl
shared memory XSl
sockets o
STREAMS XSI option opt o

15.2

Figure 15.1 Summary of UNIX System IPC

Linux, support for STREAMS is available in a separate, optional package called “LiS"”
(for Linux STREAMS). We show “opt” where the platform provides support for the
feature through an optional package—one that is not usually installed by default.

The first seven forms of IPC in Figure 15.1 are usually restricted to IPC between
processes on the same host. The final two rows—sockets and STREAMS—are the only
two that are generally supported for IPC between processes on different hosts.

We have divided the discussion of IPC into three chapters. In this chapter, we
examine classical IPC: pipes, FIFOs, message queues, semaphores, and shared memory.
In the next chapter, we take a look at network IPC using the sockets mechanism. In
Chapter 17, we take a look at some advanced features of IPC.

Pipes

Pipes are the oldest form of UNIX System IPC and are provided by all UNIX systems.
Pipes have two limitations.

1. Historically, they have been half duplex (i.e., data flows in only one direction).
Some systems now provide full-duplex pipes, but for maximum portability, we
should never assume that this is the case.

2. Pipes can be used only between processes that have a common ancestor.
Normally, a pipe is created by a process, that process calls fork, and the pipe is
used between the parent and the child.

We'll see that FIFOs (Section 15.5) get around the second limitation, and that UNIX
domain sockets (Section 17.3) and named STREAMS-based pipes (Section 17.2.2) get
around both limitations.

Despite these limitations, half-duplex pipes are still the most commonly used form
of IPC. Every time you type a sequence of commands in a pipeline for the shell to
execute, the shell creates a separate process for each command and links the standard
output of one to the standard input of the next using a pipe.

Section 15.2 Pipes 497

A pipe is created by calling the pipe function.

#include <unistd.h>

int pipe (int filedes[2]) ;

Returns: 0 if OK, -1 on error

Two file descriptors are returned through the filedes argument: filedes[0] is open for
reading, and filedes[1] is open for writing. The output of filedes[1] is the input for
filedes[0].

Pipes are implemented using UNIX domain sockets in 4.3BSD, 4.4BSD, and Mac OS X 10.3.
Even though UNIX domain sockets are full duplex by default, these operating systems hobble
the sockets used with pipes so that they operate in half-duplex mode only.

POSIX.1 allows for an implementation to support full-duplex pipes. For these
implementations, filedes[0] and filedes[1] are open for both reading and writing.

Two ways to picture a half-duplex pipe are shown in Figure 15.2. The left half of
the figure shows the two ends of the pipe connected in a single process. The right half
of the figure emphasizes that the data in the pipe flows through the kernel.

user process user process

or
£d (0] fd[1] £4a (0] £d[1)

— P =

kernel

Figure 15.2 Two ways to view a half-duplex pipe

The £stat function (Section 4.2) returns a file type of FIFO for the file descriptor of
either end of a pipe. We can test for a pipe with the S_ISFIFO macro.

POSIX.1 states that the st_size member of the stat structure is undefined for pipes. But
when the £stat function is applied to the file descriptor for the read end of the pipe, many
systems store in st_size the number of bytes available for reading in the pipe. This is,
however, nonportable.

A pipe in a single process is next to useless. Normally, the process that calls pipe
then calls fork, creating an IPC channel from the parent to the child or vice versa.
Figure 15.3 shows this scenario.

498 Interprocess Communication Chapter 15

parent child
fork
fdfo] fdl1) fdfo] fd[1]
k\ pipe)
kernel

Figure 15.3 Half-duplex pipe after a fork

What happens after the fork depends on which direction of data flow we want.
For a pipe from the parent to the child, the parent closes the read end of the pipe
(£d{01), and the child closes the write end (fd[1]). Figure 15.4 shows the resulting
arrangement of descriptors.

parent child

fd[1) £4(0]

i

kernel

Figure 15.4 Pipe from parent to child

For a pipe from the child to the parent, the parent closes £d[1], and the child closes
fdfo].)
When one end of a pipe is closed, the following two rules apply.

1. If we read from a pipe whose write end has been closed, read returns 0 to
indicate an end of file after all the data has been read. (Technically, we should
say that this end of file is not generated until there are no more writers for the
pipe. It’s possible to duplicate a pipe descriptor so that multiple processes have
the pipe open for writing. Normally, however, there is a single reader and a
single writer for a pipe. When we get to FIFOs in the next section, we'll see that
often there are multiple writers for a single FIFO.)

Section 15.2

2
2\

7. If wewritetoad pipe whose read end has been closed, the signal
generated. If we either ignore the signal or catch it and return from
handler, write returns —1 with errno set to EPIPE.

When we're writing to a pipe (or FIFO), the constant PIPE_BUF specifies the
kernel's pipe buffer size. A write of PIPE_BUF bytes OF less will not be interleaved
with the writes from other processes to the same pipe (or FIFO). But if multiple
processes are writing to a pipe (or FIFO), and if we write more than PIPE_BUF bytes,
the data might be interleaved with the data from the other writers. We can determine
the value of pIPE_BUF by using pathcont of fpathcont (recall Figure 2.11).

Example

Figure 15.5 shows the code to create a pipe between a parent and its child and to send
data down the pipe:

Wi

#ginclude napue.n"”

int
main (void)
{
int n;
int £4121;
pid_t pid;
char line[MAXLINE];

if (pipe(fd) < 0)
err_sys("pipe error") i

if ((pid = fork()) < 0 {
err_sys(“fork error");

} else if (pid > 0) { /* parent */
close(fd[O]);
write(fd[l], vhello world\n", 12)

} else { /* child */
close(fd[l]);
n = read (£410], line, MAXLINE) ;
write(STDOUT_FILENO, line, n);

Figure 15.5 Send data from parent t0 child over a pipe

exit (0);
}
O

In the previous example, we called read and write directly on the pipe
descriptors. What is more interesting is to duplicate the pipe descriptors onto standard
input or standard output. Often, the child then runs some other program, and that
program can either read from its standard input (the pipe that we created) or write to its
standard output (the pipe):

Interprocess Communication Chapter 15

Example

do this. (This example takes a command-line argument to specify the name of a file to
display. Often, a program of this type would already have the data to display to the

terminal in memory.)
#include "apue.h"
#include <sys/wait.hs

#define DEF_PAGER "/bin/more" /* default bager program */

int
main (int arge, char *argv([])

int n;

int fd[21;

pid_t pid;

char *pager, *argvQ;

char line[MAXLINE];
FILE *fp;

if (argc 1= 2)
8rr_quit("usage: a.out <pathnames>") ;

if ((fp = fopen (argvi1], "r")) == NULL)
€rr_sys("can’t open ¥s", argv[i]);
if (pipe(fd) « 0)
err _sys("pipe error") ;

if ((pid = fork()) « 0) {
err_sys("fork error");

} else if (pid > 0) { /* parent */
close (£d[0]) ; /* close read end */
/* parent copies argv([i] to pipe */
while (fgets(line, MAXLINE, fp) != NULL) {
n = strlen(line);
if (write (£d{1], line, n) 1= n)

err_sys("write error to pipe") ;

}
if (ferror (fp))
err sys("fgets error") ;

close(fd[1]); /* close write end of pipe for reader x/

if (waitpid (pid, NULL, 0) <)
err_sys("waitpid error") ;

Section 15.2 Pipes 501

exit (0);
} else { /* child */
close(£d[11); /* close write end */
if (£d[0] != STDIN_FILENO) {
if (dup2(fd[0], STDIN_FILENO) t= STDIN_FILENO)
err sys("dup2 error to stdin");
close (£4[01); /* don’t need this after dup2 */

}

/* get arguments for execl() */

if ((pager = getenv("PAGER")) == NULL)

pager = DEF_PAGER;
if ((argv0 = strrchr(pager, +/7)) != NULL)

argv0++; /* step past rightmost slash */
else

argv0 = pager; /* no slash in pager */

if (execl (pager, argvo0, (char *)0) < 0)
err_sys("execl error for %s", pager);

}

exit (0);

Figure 15.6 Copy file to pager program

Before calling fork, we create a pipe. After the fork, the parent closes its read
end, and the child closes its write end. The child then calls dup2 to have its standard
input be the read end of the pipe. When the pager program is executed, its standard
input will be the read end of the pipe.

When we duplicate a descriptor onto another (£d[0] onto standard input in the
child), we have to be careful that the descriptor doesn’t already have the desired value.
If the descriptor already had the desired value and we called dup2 and close, the
single copy of the descriptor would be closed. (Recall the operation of dup2 when its
two arguments are equal, discussed in Section 3.12). In this program, if standard input
had not been opened by the shell, the fopen at the beginning of the program should
have used descriptor 0, the lowest unused descriptor, sO f£d[0] should never equal
standard input. Nevertheless, whenever we call dup2 and close to duplicate a
descriptor onto another, we’ll always compare the descriptors first, as a defensive
programming measure.

Note how we try to use the environment variable PAGER to obtain the name of the
user’s pager program. If this doesn’t work, we use a default. This is a common usage
of environment variables. 0

Example

Recall the five functions TELL_WAIT,TELL_PARENT,TELL_CHILD,WAIT_PARENT,
and WAIT CHILD from Section 89. In Figure 10.24, we showed an implementation

using signals. Figure 15.7 shows an implementation using pipes.

502 Interprocess Communication Chapter 15

#include "apue.h"
static int pfd1{2], pfd2[2];

void -
TELL_WAIT (void)
{
if (pipe(pfdl) < 0 || pipe(pfd2) < 0)
err_sys("pipe error");

}

void
TELL_PARENT (pid_t pid)
{
if (write(pfd2(1], "c", 1) != 1)
err_sys("write error");
}
void
WAIT_ PARENT (void)
{
char c;
if (read(pfd1[0], &c, 1) != 1)
err_sys("read error");
if (¢ !'= 'p’)
err_quit ("WAIT_PARENT: incorrect data");
}
void
TELL_CHILD (pid_t pid)
{
if (write(pfdl(1], "p", 1) != 1)
err_sys("write error");
}
void
WAIT CHILD(void)
{
char C;
if (read(pfd2[0], &c, 1) != 1)
err_sys("read error");
if (¢ 1= 'c")
err_quit ("WAIT_CHILD: incorrect data") ;
}

Figure 15.7 Routines to let a parent and child synchronize

Section 15.3 popen and pclose Functions 503

We create two pipes before the fork, as shown in Figure 15.8. The parent writes the
character “p” across the top pipe when TELL_CHILD is called, and the child writes the
character “c” across the bottom pipe when TELL_PARENT is called. The corresponding

WAIT_xxx functions do a blocking read for the single character.

parent child

pfdi(1] P »| p£d1 (0]

pfd2 (0] e pfd2[1]

Figure 15.8 Using two pipes for parent—child synchronization

Note that each pipe has an extra reader, which doesn’t matter. That is, in addition
to the child reading from p£d1 [0], the parent also has this end of the top pipe open for
reading. This doesn't affect us, since the parent doesn’t try to read from this pipe. 0

15.3 popen and pclose Functions

Since a common operation is to create a pipe to another process, to either read its output
or send it input, the standard I/O library has historically provided the popen and
pclose functions. These two functions handle all the dirty work that we’ve been doing
ourselves: creating a pipe, forking a child, closing the unused ends of the pipe,
executing a shell to run the command, and waiting for the command to terminate.

#include <stdio.h>
FILE *popen(const char *cmdstring, const char *type) ;
Returns: file pointer if OK, NULL on error

int pclose (FILE *fp);

Returns: termination status of cmdstring, or —1 on error

The function popen does a fork and exec to execute the cmdstring, and returns a
standard 1/0 file pointer. If type is "x", the file pointer is connected to the standard
output of cmdstring (Figure 15.9).

parent cmdstring (child)

fp |- stdout

Figure 159 Resultof fp = popen (cmdstring, "xr")

If type is "w", the file pointer is connected to the standard input of cmdstring, as shown
in Figure 15.10.

504 Interprocess Communication Chapter 15
___parent glmfsfring (child)
fg] stdin
Figure 15.10 Resultof fp = popen (cmdstring, "w")
One way to remember the final argument to popen is to remember that, like fopen, the
returned file pointer is readable if type is " r" or writable if type is "w".

The pclose function closes the standard 1/O stream, waits for the command to
terminate, and returns the termination status of the shell. (We described the
termination status in Section 8.6. The system function, described in Section 8.13, also
returns the termination status.) If the shell cannot be executed, the termination status
returned by pclose is as if the shell had executed exit (127).

The cmdstring is executed by the Bourne shell, as in

sh -c cmdstring
This means that the shell expands any of its special characters in cmdstring. This allows
us to say, for example,

fp = popen("ls *.c", "r");
or

fp = popen{("cmd 2>&1", "r");

Example

Let’s redo the program from Figure 15.6, using popen. This is shown in Figure 15.11.

#include "apue.h"
#include <sys/wait.h>

#define PAGER "${PAGER:-more}" /* environment variable, or default */
int

main(int argc, char *argvl(])

{

char line [MAXLINE] ;
FILE *fpin, *fpout;

if (argc != 2)
err_quit ("usage: a.out <pathnames") ;
if ((fpin = fopen(argv[1l], "r")) == NULL)

err_sys("can’t open %s", argv(l]);

if ((fpout = popen(PAGER, "w")) == NULL)
err_sys("popen error");

/* copy argv[l] to pager */

Section 15.3 popen and pclose Functions 505

while (fgets(line, MAXLINE, fpin) != NULL) {
if (fputs(line, fpout) == EOF)
err sys("fputs error to pipe");
}
if (ferror(fpin})
err_sys("fgets error");
if (pclose(fpout) == -1)
err_sys("pclose error");

exit (0);

Figure 15.11 Copy file to pager program using popen
Using popen reduces the amount of code we have to write.
The shell command $ { PAGER: -more} says to use the value of the shell variable
PAGER if it is defined and non-null; otherwise, use the string more. m]

Example—popen and pclose Functions

Figure 15.12 shows our version of popen and pclose.

#include "apue.h"
#include <errno.h>
#include <fcntl.h>
#include <sys/wait.h>

/*
* Pointer to array allocated at run-time.
*/
static pid_ t *childpid = NULL;
/*
* From our open max{), Figure 2.16.
*/
static int maxfd;
FILE *
popen (const char *cmdstring, const char *type)
{
int i;
int ptdl2];

pid_t pid;
FILE *fp;

/* only allow "r" or "Wt %/

if ((typel0] != ‘r’' && typel[0] != 'w’') || typel1]l t= 0) {
errno = EINVAL; /* required by POSIX */
return (NULL) ;

506 Interprocess Communication Chapter 15

if (childpid == NULL) { /* first time through */
/* allocate zeroed out array for child pids */
maxfd = open max();
if ((childpid = calloc (maxfd, sizeof (pid_t))) == NULL)
return (NULL) ;

}

if (pipe(pfd) < 0)
return (NULL) ; /* errno set by pipe() */

if ((pid = fork()) < 0) {

return (NULL) ; /* errno set by fork() */
} else if (pid == 0) { /* child */
if (*type == ‘r’) {
close(pfd[0]) ;
if (pfd[1] != STDOUT_FILENO) {

dup2 (pfd[1], STDOUT FILENO) ;
close (pfd[1]);

}

} else {

close(pfd(1]);

if (pfd[0] != STDIN FILENO) {
dup2 (pfd[0], STDIN_FILENO) ;
close (pfd[0]) ;

}

/* close all descriptors in childpid[] */
for (i = 0; 1 < maxfd; i++)
if (childpid([i] > 0)

close (i) ;
execl ("/bin/sh", "sh", "-c", cmdstring, (char *)O0);
_exit(127);
}
/* parent continues... */
if (*type == 'r’) {
close (ptd[1]);

if ((fp = fdopen(pfd[0], type)) == NULL)
return (NULL) ;
} else {
close (pfd[0]) ;
if ((fp = fdopen(pfd[l], type)) == NULL)
return (NULL) ;

}

childpid(fileno(fp)] = pid; /* remember child pid for this fd */
return(fp) ;

Section 15.3 popen and pclose Functions 507

int

pclose (FILE *fp)

{
int fd, stat;
pid_t pid;

if (childpid == NULL) {
errnc = EINVAL;

return(-1) ; /* popen() has never been called */
}
fd = fileno(fp);
if ({(pid = childpid[£fd]) == 0) {
errno = EINVAL;
return(-1); /* fp wasn't opened by popen() */
}
childpid(fdl]

= 0;
if (fclose (fp) == EOF)
)i

return(-1
while (waitpid(pid, &stat, 0) < 0)
if (errno != EINTR) :
return(-1); /* error other than EINTR from waitpid() */

return(stat) ; /* return child’s termination status *x/

Figure 1512 The popen and pclose functions

Although the core of popen is similar to the code we’ve used earlier in this chapter,
there are many details that we need to take care of. First, each time popen is called, we
have to remember the process ID of the child that we create and either its file descriptor
or FILE pointer. We choose to save the child’s process ID in the array childpid,

- which we index by the file descriptor. This way, when pclose is called with the FILE
pointer as its argument, we call the standard I/O function fileno to get the file
descriptor, and then have the child process ID for the call to waitpid. Since it's
possible for a given process to call popen more than once, we dynamically allocate the
childpid array (the first time popen is called), with room for as many children as
there are file descriptors.

Calling pipe and fork and then duplicating the appropriate descriptors for each
process is similar to what we did earlier in this chapter.

POSIX.1 requires that popen close any streams that are still open in the child from
previous calls to popen. To do this, we go through the childpid array in the child,
closing any descriptors that are still open.

What happens if the caller of pclose has established a signal handler for
STGCHLD? The call to waitpid from pclose would return an error of EINTR. Since
the caller is allowed to catch this signal (or any other signal that might interrupt the call
to waitpid), we simply call waitpid againif itis interrupted by a caught signal.

508 Interprocess Communication Chapter 15

Note that if the application calls waitpid and obtains the exit status of the child
created by popen, we will call waitpid when the application calls pclose, find that
the child no longer exists, and return —1 with errno set to ECHILD. This is the behavior
required by POSIX.1 in this situation.

Some early versions of pclose returned an error of EINTR if a signal interrupted the wait.
Also, some early versions of pclose blocked or ignored the signals SIGINT, SIGQUIT, and

SIGHUP during the wait. This is not allowed by POSIX.1. O

Note that popen should never be called by a set-user-ID or set-group-ID program.
When it executes the command, popen does the equivalent of

execl ("/bin/sh", "sh", "-c", command, NULL) ;

which executes the shell and command with the environment inherited by the caller. A
malicious user can manipulate the environment so that the shell executes commands
other than those intended, with the elevated peimissions granted by the set-ID file
mode.

One thing that popen is especially well suited for is executing simple filters to
transform the input or output of the running command. Such is the case when a
command wants to build its own pipeline.

Example

Consider an application that writes a prompt to standard output and reads a line from
standard input. With popen, we can interpose a program between the application and
its input to transform the input. Figure 15.13 shows the arrangement of processes.

parent filter program
< POPETPIPE stdout
stdout stdin

Figure 15.13 Transforming input using popen

The transformation could be pathname expansion, for example, or providing a history
mechanism (remembering previously entered commands).

Figure 15.14 shows a simple filter to demonstrate this operation. The filter copies
standard input to standard output, converting any uppercase character to lowercase.
The reason we're careful to fflush standard output after writing a newline is
discussed in the next section when we talk about coprocesses.

Section 15.3 popen and pclose Functions 509

#include "apue.h"
#include <ctype.h>

int
main (void)

{

int c;

while ({(c = getchar()) != EOF) {
if (isupper(c))
¢ = tolower(c);

if (putchar(c) == EOF)
err_sys ("output error");
if (¢ == '\n’)
fflush(stdout);
}
exit (0);

Figure 15.14 Filter to convert uppercase characters to lowercase

We compile this filter into the executable file myuclc, which we then invoke from
the program in Figure 15.15 using popen.

#include "apue.h"
#include <sys/wait.h>

int
main (void)

{

char line [MAXLINE] ;
FILE *fpin;
if ((fpin = popen("myuclc", "rv)) == NULL)
. err_sys("popen error") ;
for (; ;) {
fputs ("prompt> ", stdout) ;
fflush (stdout) ;
if (fgets(line, MAXLINE, fpin) == NULL) /* read from pipe */
break;
if (fputs(line, stdout) == EOF)

err_sys("fputs error to pipe");

if (pclose(fpin) == -1)
err_sys("pclose error") ;

putchar (‘\n’};

exit (0);

Figure 15.15 Invoke uppercase/lowercase filter to read commands

510

Interprocess Communication Chapter 15

15.4

We need to call £f1ush after writing the prompt, because the standard output is
normally line buffered, and the prompt does not contain a newline. O

Coprocesses

A UNIX system filter is a program that reads from standard input and writes to
standard output. Filters are normally connected linearly in shell pipelines. A filter
becomes a coprocess when the same program generates the filter’s input and reads the
filter's output.

The Korn shell provides coprocesses [Bolsky and Korn 1995]. The Bourne shell, the
Bourne-again shell, and the C shell don’t provide a way to connect processes together as
coprocesses. A coprocess normally runs in the background from a shell, and its
standard input and standard output are connected to another program using a pipe.
Although the shell syntax required to initiate a coprocess and connect its input and
output to other processes is quite contorted (see pp. 6263 of Bolsky and Korn [1995] for
all the details), coprocesses are also useful from a C program.

Whereas popen gives us a one-way pipe to the standard input or from the standard
output of another process, with a coprocess, we have two one-way pipes to the other
process: one to its standard input and one from its standard output. We want to write
to its standard input, let it operate on the data, and then read from its standard output.

Example

Let’s look at coprocesses with an example. The process creates two pipes: one is the
standard input of the coprocess, and the other is the standard output of the coprocess.
Figure 15.16 shows this arrangement.

parent child (coprocess)
£d1(1] PPel ol stdin
£d2 (0] | pipes stdout

Figure 15.16 Driving a coprocess by writing its standard input and reading its standard output

The program in Figure 15.17 is a simple coprocess that reads two numbers from its
standard input, computes their sum, and writes the sum to its standard output.
(Coprocesses usually do more interesting work than we illustrate here. This example is
admittedly contrived so that we can study the plumbing needed to connect the
processes.)

Section 15.4

Coprocesses

511

#include "apue.h"

int
main (void)

{

int n, intl, int2;

char line [MAXLINE] ;

while ((n = read(STDIN FILENO, line, MAXLINE)) > 0) {
line[n] = 0; /* null terminate */
if (sscanf(line, "%d%d", &intl, &int2) == 2) {

sprintf (line, "%d\n", intl + int2);
n = strlen(line);
if (write(STDOUT FILENO, line, n) != n)
err_sys("write error");
} else {
if (write(STDOUT FILENO, "invalid args\n", 13) !=
err_sys("write error");
}
}

exit (0) ;

Figure 15.17 Simple filter to add two numbers

We compile this program and leave the executable in the file add2.

The program in Figure 15.18 invokes the add2 coprocess after reading two numbers
from its standard input. The value from the coprocess is written to its standard output.

#include "apue.h"

static void sig_pipe(int); /* our signal handler */
int
main(void)
{
int n, fdi([2], £d21(2];
pid_t pid;
char line [MAXLINE] ;
if (signal (SIGPIPE, sig_pipe) == SIG_ERR)

err_sys("signal erroxr") ;

if (pipe(fdl) < 0 || pipe(fd2) < 0)
err_sys("pipe error");

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid > 0) { /* parent */

close (£41[0]) ;
close (£d42[1]);

512 Interprocess Communication Chapter 15

while (fgets(line, MAXLINE, stdin) != NULL) {
n = strlen(line);
if (write(fdi1{1], line, n) != n)

err_sys("write error to pipe");
if ((n = read(fd2[0], line, MAXLINE)) < 0)
err_sys("read error from pipe");

if (n == 0) {
err msg("child closed pipe");
break;
}
line[n] = 0; /* null terminate */
if (fputs(line, stdout) == EOF)

err sys("fputs error");

}

if (ferror(stdin))
err_sys("fgets error on stdin");
exit (0);
} else { /* child */
close(fd1[1]);
close(£d2[0]) ;
if (£d1[0] != STDIN_FILENO) ({
if (dup2(f£di[o], STDIN_FILENO) != STDIN FILENO)
err sys("dup2 error to stdin");
close (£41[0]) ;

}

if (£d2[1] !'= STDOUT FILENO) {
if (dup2(f£d2[1], STDOUT_FILENO) != STDOUT_FILENO)
err_sys("dup2 error to stdout");
close (fd2(1]) ;

}

if (execl("./add2", "add2", (char *)0) < 0)
err_sys("execl error");

}

exit (0);

}

static void
sig_pipe(int signo)

printf ("SIGPIPE caught\n");
exit (1) ;

Figure 15.18 Program to drive the add2 filter

Here, we create two pipes, with the parent and the child closing the ends they don't
need. We have to use two pipes: one for the standard input of the coprocess and one for
its standard output. The child then calls dup2 to move the pipe descriptors onto its
standard input and standard output, before calling exec1.

Section 15.4 Coprocesses 513

If we compile and run the program in Figure 15.18, it works as expected.
Furthermore, if we kill the add2 coprocess while the program in Figure 15.18 is
waiting for our input and then enter two numbers, the signal handler is invoked when
the program writes to the pipe that has no reader. (See Exercise 15.4.)

Recall from Figure 15.1 that not all systems provide full-duplex pipes using the
pipe function. In Figure 17.4, we provide another version of this example using a
single full-duplex pipe instead of two half-duplex pipes, for those systems that support
full-duplex pipes. 0

Example

In the coprocess add2 (Figure 15.17), we purposely used low-level I/O (UNIX system
calls): read and write. What happens if we rewrite this coprocess to use standard
1/0? Figure 15.19 shows the new version.

#include "apue.h"

int
main(void)
{
int intl, int2;
char line [MAXLINE] ;
while (fgets(line, MAXLINE, stdin) != NULL) {
if (sscanf(line, "%d%d", &intl, &int2) == 2) {
if (printf ("%d\n", intl + int2) == EOF)
err_sys("printf error");
} else {
if (printf("invalid args\n") == EOF)
err_sys ("printf error");
}
}
exit (0) ;
}

Figure 15.19 Filter to add two numbers, using standard 1/0O

If we invoke this new coprocess from the program in Figure 15.18, it no longer
works. The problem is the default standard I/0 buffering. When the program in
Figure 15.19 is invoked, the first fgets on the standard input causes the standard 1/0
library to allocate a buffer and choose the type of buffering. Since the standard input is
a pipe, the standard 1/O library defaults to fully buffered. The same thing happens
with the standard output. While add2 is blocked reading from its standard input, the
program in Figure 15.18 is blocked reading from the pipe. We have a deadlock.

Here, we have control over the coprocess that’s being run. We can change the
program in Figure 15.19 by adding the following four lines before the while loop:

514

Interprocess Communication Chapter 15

15.5

if (setvbuf(stdin, NULL, _IOLBF, 0) != 0)
err_sys{("setvbuf error");
if (setvbuf (stdout, NULL, _IOLBF, 0) != 0)

err sys("setvbuf error");

These lines cause fgets to return when a line is available and cause printf to do an
ff1lush when a newline is output (refer back to Section 5.4 for the details on standard
I/O buffering). Making these explicit calls to setvbuf fixes the program in
Figure 15.19.

If we aren’t able to modify the program that we're piping the output into, other
techniques are required. For example, if we use awk(l) as a coprocess from our
program (instead of the add2 program), the following won’t work:

#! /bin/awk -f
{ print $1 + $2 }

The reason this won’t work is again the standard 1/O buffering. But in this case, we
cannot change the way awk works (unless we have the source code for it). We are
unable to modify the executable of awk in any way to change the way the standard 1/0
buffering is handled.

The solution for this general problem is to make the coprocess being invoked (awk
in this case) think that its standard input and standard output are connected to a
terminal. That causes the standard 1/0O routines in the coprocess to line buffer these
two 1/0 streams, similar to what we did with the explicit calls to setvbuf previously.
We use pseudo terminals to do this in Chapter 19. o

FIFOs

FIFOs are sometimes called named pipes. Pipes can be used only between related
processes when a common ancestor has created the pipe. (An exception to this is
mounted STREAMS-based pipes, which we discuss in Section 17.2.2.) With FIFOs,
however, unrelated processes can exchange data.

We saw in Chapter 4 that a FIFO is a type of file. One of the encodings of the
st_mode member of the stat structure (Section 4.2).indicates that a file is a FIFO. We
can test for this with the S_ISFIFO macro.

Creating a FIFO is similar to creating a file. Indeed, the pathname for a FIFO exists in
the file system.

#include <sys/stat.h>

int mkfifo(const char *pathname, mode t mode) ;

Returns: 0 if OK, -1 on error

The specification of the mode argument for the mkfifo function is the same as for the
open function (Section 3.3). The rules for the user and group ownership of the new
FIFO are the same as we described in Section 4.6.

Section 15.5 FIFOs 515

Once we have used mkfifo to create a FIFO, we open it using open. Indeed, the
normal file I/O functions (close, read, write, unlink, etc.) all work with FIFOs.

Applications can create FIFOs with the mknod function. Because POSIX.1 originally didn't
include mknod, the mkfifo function was invented specifically for POSIX.1. The mknod
function is now included as an XSI extension. On most systems, the mkfifo function calls
mknod to create the FIFO.

POSIX.1 also includes support for the mkfifo(1) command. All four platforms discussed in
this text provide this command. This allows a FIFO to be created using a shell command and
then accessed with the normal shell [/O redirection.

When we open a FIFO, the nonblocking flag (0_NONBLOCK) affects what happens.

e In the normal case (O_NONBLOCK not specified), an open for read-only blocks
until some other process opens the FIFO for writing. Similarly, an open for
write-only blocks until some other process opens the FIFO for reading.

¢ If 0 NONBLOCK is specified, an open for read-only returns immediately. But an
open for write-only returns -1 with errno set to ENXIO if no process has the
FIFO open for reading.

As with a pipe, if we write to a FIFO that no process has open for reading, the signal
SIGPIPE is generated. When the last writer for a FIFO closes the FIFO, an end of file is
generated for the reader of the FIFO.

It is common to have multiple writers for a given FIFO. This means that we have to
worry about atomic writes if we don’t want the writes from multiple processes to be
interleaved. (We'll see a way around this problem in Section 17.2.2.) As with pipes, the
constant PIPE_BUF specifies the maximum amount of data that can be written
atomically to a FIFO.

There are two uses for FIFOs.

1. FIFOs are used by shell commands to pass data from one shell pipeline to
another without creating intermediate temporary files.

2. FIFOs are used as rendezvous points in client-server applications to pass data
between the clients and the servers.

We discuss each of these uses with an example.

Example—Using FIFOs to Duplicate Output Streams

FIFOs can be used to duplicate an output stream in a series of shell commands. This
prevents writing the data to an intermediate disk file (similar to using pipes to avoid
intermediate disk files). But whereas pipes can be used only for linear connections
between processes, a FIFO has a name, so it can be used for nonlinear connections.

Consider a procedure that needs to process a filtered input stream twice.
Figure 15.20 shows this arrangement.

516

Interprocess Communication Chapter 15

prog3

input

— 1
file prog

prog2

Figure 15.20 Procedure that processes a filtered input stream twice

With a FIFO and the UNIX program tee(1), we can accomplish this procedure
without using a temporary file. (The tee program copies its standard input to both its
standard output and to the file named on its command line.)

mkfifo fifol
prog3 < fifol &
progl < infile | tee fifol | prog2

We create the FIFO and then start prog3 in the background, reading from the FIFO. We
then start progl and use tee to send its input to both the FIFO and prog:.
Figure 15.21 shows the process arrangement.

FIFO prog3

input

file ——#= progl > tee

prog2

Figure 15.21 Using a FIFO and tee to send a stream to two different processes

Example—Client-Server Communication Using a FIFO

Another use for FIFOs is to send data between a client and a server. If we have a server
that is contacted by numerous clients, each client can write its request to a well-known
FIFO that the server creates. (By “well-known” we mean that the pathname of the FIFO
is known to all the clients that need to contact the server.) Figure 15.22 shows this
arrangement. Since there are multiple writers for the FIFO, the requests sent by the
clients to the server need to be less than PIPE_BUF bytes in size. This prevents any
interleaving of the client writes.

Section 15.5

%\

server

A

read|requests

well-known

Figure 15.22 Clients sending requests to a server using a FIFO

The problem in using FIFOs for this type of client-server communication is how to
send replies back from the server to each client. A single FIFO can’t be used, as the
clients would never know when to read their response versus responses for other
clients. One solution is for each client to send its process ID with the request. The
server then creates a unique FIFO for each client, using a pathname based on the client’s
process ID. For example, the server can create a FIFO with the name
/tmp/servl . XXXXX, where XXXXx is replaced with the client’s process ID.
Figure 15.23 shows this arrangement.

Figure 15.23 Client-server communication using FIFOs

15.6

Interprocess Communication Chapter 15

This arrangement works, although it is impossible for the server to tell whether a client
crashes. This causes the client-specific FIFOs to be left in the file system. The server
also must catch SIGPIPE, since it’s possible for a client to send a request and terminate
before reading the response, leaving the client-specific FIFO with one writer (the server)
and no reader. We'll see a more elegant approach to this problem when we discuss
mounted STREAMS-based pipes and connld in Section 17.2.2.

With the arrangement shown in Figure 15.23, if the server opens its well-known
FIFO read-only (since it only reads from it) each time the number of clients goes from 1
to 0, the server will read an end of file on the FIFO. To prevent the server from having
to handle this case, a common trick is just to have the server open its well-known FIFO
for read-write. (See Exercise 15.10.) O

XSl IPC

The three types of IPC that we call XSI IPC—message queues, semaphores, and shared
memory-—have many similarities. In this section, we cover these similar features; in the
following sections, we look at the specific functions for each of the three IPC types.

The XSIIPC functions are based closely on the System V IPC functions. These three types of
[PC originated in the 1970s in an internal AT&T version of the UNIX System called “Columbus
UNIX." These IPC features were’ later added to System V. They are often criticized for
inventing their own namespace instead of using the file system.

Recall from Figure 15.1 that message queues, semaphores, and shared memory are defined as
XSl extensions in the Single UNIX Specification.

15.6.1 Identifiers and Keys

Each IPC structure (message queue, semaphore, or shared memory segment) in the
kernel is referred to by a non-negative integer identifier. To send or fetch a message to or
from a message queue, for example, all we need know is the identifier for the queue.
Unlike file descriptors, IPC identifiers are not small integers. Indeed, when a given IPC
structure is created and then removed, the identifier associated with that structure
continually increases until it reaches the maximum positive value for an integer, and
then wraps around to 0.

The identifier is an internal name for an IPC object. Cooperating processes need an
external naming scheme to be able to rendezvous using the same IPC object. For this
purpose, an IPC object is associated with a key that acts as an external name.

Whenever an IPC structure is being created (by calling msgget, semget, or
shmget), a key must be specified. The data type of this key is the primitive system data
type key_t, which is often defined as a long integer in the header <sys/types.h>.
This key is converted into an identifier by the kernel.

There are various ways for a client and a server to rendezvous at the same JPC
structure.

Section 15.6 XSI

e

1. The server can create a new IPC structure by specifying a key of IPC_i
and store the returned identifier somewhere (such as a file) for the
obtain. The key IPC_PRIVATE guarantees that the server creates a new IPC
structure. The disadvantage to this technique is that file system operations are
required for the server to write the integer identifier to a file, and then for the
clients to retrieve this identifier later.

The IPC_PRIVATE key is also used in a parent—child relationship. The parent
creates a new IPC structure specifying IPC_PRIVATE, and the resulting
identifier is then available to the child after the fork. The child can pass the
identifier to a new program as an argument to one of the exec functions.

2. The client and the server can agree on a key by defining the key in a common
header, for example. The server then creates a new IPC structure specifying this
key. The problem with this approach is that it’s possible for the key to already
be associated with an IPC structure, in which case the get function (msgget,
semget, or shmget) returns an error. The server must handle this error,
deleting the existing IPC structure, and try to create it again.

3. The client and the server can agree on a pathname and project ID (the project ID
is a character value between 0 and 255) and call the function ftok to convert
these two values into a key. This key is then used in step 2. The only service
provided by ftok is a way of generating a key from a pathname and project ID.

#include <sys/ipc.h>
key t ftok(const char *path, int id);

Returns: key if OK, (key_t)-1 on error’

The path argument must refer to an existing file. Only the lower 8 bits of id are used
when generating the key.

The key created by ftok is usually formed by taking parts of the st_dev and
st_ino fields in the stat structure (Section 4.2) corresponding to the given pathname
and combining them with the project ID. If two pathnames refer to two different files,
then ftok usually returns two different keys for the two pathnames. However, because
both i-node numbers and keys .are often stored in long integers, there can be
information loss creating a key. This means that two different pathnames to different
files can generate the same key if the same project ID is used.

The three get functions (msgget, semget, and shmget) all have two similar
arguments: a key and an integer flag. A new IPC structure is created (normally, by a
server) if either key is TPC_PRIVATE or key is not currently associated with an IPC
structure of the particular type and the TPC_CREAT bit of flag is specified. To reference
an existing queue (normally done by a client), key must equal the key that was specified
when the queue was created, and TPC_CREAT must not be specified.

Note that it’s never possible to specify IPC_PRIVATE to reference an existing
queue, since this special key value always creates a new queue. To reference an existing
queue that was created with a key of TPC_PRIVATE, we must know the associated

,20 Interprocess Communication Chapter 15

identifier and then use that identifier in the other IPC calls (such as msgsnd and
msgrcv), bypassing the get function.

It we want to create a new IPC structure, making sure that we don’t reference an
existing one with the same identifier, we must specify a flag with both the IPC_CREAT
and IPC_EXCL bits set. Doing this causes an error return of EEXIST if the IPC structure
already exists. (This is similar to an open that specifies the O CREAT and O_EXCL
flags.)

15.6.2 Permission Structure

XSI IPC associates an ipc_perm structure with each IPC structure. This structure
defines the permissions and owner and includes at least the following members:

struct ipc perm {
uid t wuid; /* owner’'s effective user id */
gid t gid; /* owner’'s effective group id */
uid t cuid; /* creator’s effective user id */
gid t «cgid; /* creator’'s effective group id */
mode_t mode; /* access modes */

}:.

Each implementation includes additional members. See <sys/ipc.h> on your system
for the complete definition.

All the fields are initialized when the IPC structure is created. At a later time, we
can modify the uid, gid, and mode fields by calling msgctl, semctl, or shmetl. To
change these values, the calling process must be either the creator of the IPC structure
or the superuser. Changing these fields is similar to calling chown or chmod for a file.

The values in the mode field are similar to the values we saw in Figure 4.6, but there
is nothing corresponding to execute permission for any of the IPC structures. Also,
message queues and shared memory use the terms read and write, but semaphores use
the terms read and alter. Figure 15.24 shows the six permissions for each form of IPC.

" Permission Bit
Tuser-read . 0400
user-write (alter) 0200
group-read 0040
group-write (alter) | 0020
other-read 0004
other-write (alter) 0002

Figure 15.24 XSI IPC permissions

Some implementations define symbolic constants to represent each permission,
however, these constants are not standardized by the Single UNIX Specification.

Section 15.6 XSI IPC 521

15.6.3 Configuration Limits

All three forms of XSI IPC have built-in limits that we may encounter. Most of these
limits can be changed by reconfiguring the kernel. We describe the limits when we
describe each of the three forms of IPC.

Each platform provides its own way to report and modify a particular limit. FreeBSD 5.2.1,
Linux 2.4.22, and Mac OS X 10.3 provide the sysctl command to view and modify kernel
configuration parameters. On Solaris 9, changes to kernel configuration parameters are made
by modifying the file /etc/systemand rebooting.

On Linux, you can display the IPC-related limits by running ipcs -1. On FreeBSD, the
equivalent command is ipcs -T. On Solaris, you can discover the tunable parameters by
running sysdef -i.

15.6.4 Advantages and Disadvantages

A fundamental problem with XSI IPC is that the IPC structures are systemwide and do
not have a reference count. For example, if we create a message queue, place some
messages on the queue, and then terminate, the message queue and its contents are not
deleted. They remain in the system until specifically read or deleted by some process
calling msgrcv or msgctl, by someone executing the ipcrm(l) command, or by the
system being rebooted. Compare this with a pipe, which is completely removed when
the last process to reference it terminates. With a FIFO, although the name stays in the
file system until explicitly removed, any data left in a FIFO is removed when the last
process to reference the FIFO terminates.

Another problem with XSI IPC is that these IPC structures are not known by names
in the file system. We can’t access them and modify their properties with the functions
we described in Chapters 3 and 4. Almost a dozen new system calls (msgget, semop,
shmat, and so on) were added to the kernel to support these IPC objects. We can't see
the IPC objects with an 1s command, we can’t remove them with the rm command, and
we can’t change their permissions with the chmod command. Instead, two new
commands— ipcs(1) and ipcrm(l)—were added.

Since these forms of IPC don’t use file descriptors, we can’t use the multiplexed 1/0
functions (select and poll) with them. This makes it harder to use more than one of
these IPC structures at a time or to use any of these IPC structures with file or device
1/0. For example, we can’t have a server wait for a message to be placed on one of two
message queues without some form of busy-wait loop.

An overview of a transaction processing system built using System V IPC is given
in Andrade, Carges, and Kovach [1989]. They claim that the namespace used by
System V IPC (the identifiers) is an advantage, not a problem as we said earlier, because
using identifiers allows a process to send a message to a message queue with a single
function call (msgsnd), whereas other forms of IPC normally require an open, write,
and close. This argument is false. Clients still have to obtain the identifier for the
server’s queue somehow, to avoid using a key and calling msgget. The identifier
assigned to a particular queue depends on how many other message queues exist when
the queue is created and how many times the table in the kernel assigned to the new

522

Interprocess Communication Chapter 15

15.7

queue has been used since the kernel was bootstrapped. This is a dynamic value that
can’t be guessed or stored in a header. As we mentioned in Section 15.6.1, minimally a
server has to write the assigned queue identifier to a file for its clients to read.

Other advantages listed by these authors for message queues are that they're
reliable, flow controlled, record oriented, and can be processed in other than first-in,
first-out order. As we saw in Section 14.4, the STREAMS mechanism also possesses all
these properties, although an open is required before sending data to a stream, and a
close is required when we're finished. Figure 15.25 compares some of the features of
these various forms of IPC.

Message types

IPC type Connectionless? | Reliable? | Flow control? | Records? N
), or priorities?

message queues no yes yes yes yes
STREAMS no yes yes yes yes
I UNIX domain stream socket no yes yes no no
UNIX domain datagram socket yes yes no yes no
FIFOs (non-STREAMS) no yes yes no no

Figure 15.25 Comparison of features of various forms of IPC

(We describe stream and datagram sockets in Chapter 16. We describe UNIX domain
sockets in Section 17.3.) By “connectionless,” we mean the ability to send a message
without having to call some form of an open function first. As described previously, we
don’t consider message queues connectionless, since some technique is required to
obtain the identifier for a queue. Since all these forms of IPC are restricted to a single
host, all are reliable. When the messages are sent across a network, the possibility of
messages being lost becomes a concern. “Flow control” means that the sender is put to
sleep if there is a shortage of system resources (buffers) or if the receiver can't accept
any more messages. When the flow control condition subsides, the sender should
automatically be awakened.

One feature that we don’t show in Figure 15.25 is whether the IPC facility can
automatically create a unique connection to a server for each client. We'll see in
Chapter 17 that STREAMS and UNIX stream sockets provide this capability.

The next three sections describe each of the three forms of XSI IPC in detail.

Message Queues

A message queue is a linked list of messages stored within the kernel and identified by
a message queue identifier. We'll call the message queue just a queue and its identifier a
quewe I1D.

The Single UNIX Specification includes an alternate IPC message queue implementation in the
message-passing option of its real-time extensions. We do not cover the real-time extensions in
this text.

A new queue is created or an existing queue opened by msgget. New messages
are added to the end of a queue by msgsnd. Every message has a positive long integer

Section 15.7 Message Queues 523

type field, a non-negative length, and the actual data bytes (corresponding to the
length), all of which are specified to msgsnd when the message is added to a queue.
Messages are fetched from a queue by msgrev. We don’t have to fetch the messages in
a first-in, first-out order. Instead, we can fetch messages based on their type field.

Each queue has the following msqid_ds structure associated with it:

struct msgid ds { .
struct ipc_perm msg_perm; /* see Section 15.6.2 */

msggnum_t msg_gnum; /* # of messages on queue */
msglen t msg_gbytes; /* max # of bytes on queue * /
pid t msg_lspid; /* pid of last msgsnd() */
pid t msg lrpid; /* pid of last msgrev() */
time_t msg_stime; /* last-msgsnd() time */

time t msg_rtime; /* last-msgrcv() time */

time t msg_ctime; /* last-change time */

}i
This structure defines the current status of the queue. The members shown are the ones
defined by the Single UNIX Specification. Implementations include additional i.i-
not covered by the standard.

Figure 15.26 lists the system limits that affect message queues. We show “not-p
where the platform doesn’t support the feature. We show “derived” whenever a limit is
derived from other limits. For example, the maximum number of messages in a linu
system is based on the maximum number of queues and the maximum amount of .2
allowed on the queues. If the minimum message size is 1 byte, that would lim::
number of messages systemwide to maximum # queues * maximum size of a queue. Giver
the limits in Figure 15.26, Linux has an upper bound of 262,144 messages with the
default configuration. (Even though a message can contain zero bytes of data, Linux
treats it as if it contained 1 byte, to limit the number of messages queued.)

Typical values 1

Description FreeBSD | Linux | Mac OSX | Solaris

521 2422 10.3 9 |

Size in bytes of largest message we can send 16,384 8,192 notsup 2,048 |

The maximum size in bytes of a particular queue (ie., 2,048 16,384 notsup 4,096 ;

the sum of all the messages on the queue) i

The maximum number of messages queues, systemwide 40 16 notsup 50 |
The maximum number of messages, systemwide 40 | derived notsup 40

Figure 15.26 System limits that affect message queues

Recall from Figure 15.1 that Mac OS X 10.3 doesn’t support XSI message queues. Since Mac OS
X is based in part on FreeBSD, and FreeBSD supports message queues, it is possible for Mac
0S X to support them, too. Indeed, a good Internet search engine will provide pointers to a
third-party port of XSI message queues for Mac oS X.

_ The first function normally called is msgget to either open an existing queue or
create a new queue.

524

Interprocess Communication Chapter 15

#include <sys/msg.h>

int msgget(key_t key, int flag) :

Returns: message queue ID if OK, -1 on error

In Section 15.6.1, we described the rules for converting the key into an identifier and
discussed whether a new queue is created or an existing queue is referenced. When a
new queue is created, the following members of the msqid_ds structure are initialized.

* The ipc_perm structure is initialized as described in Section 15.6.2. The mode
member of this structure is set to the corresponding permission bits of flag.
These permissions are specified with the values from Figure 15.24.

* msg_gnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are all set
to 0.
* msg_ctime is set to the current time.

* msg_gbytes is set to the system limit.

On success, msgget returns the non-negative queue ID. This value is then used with
the other three message queue functions.

The msgctl function performs various operations on a queue. This function and
the related functions for semaphores and shared memory (semct1 and shmct1) are the
ioct1-like functions for XSI IPC (i.e., the garbage-can functions).

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqgid_ds *buf) ;

Returns: 0 if OK, -1 on error

The cmd argument specifies the command to be performed on the queue specified by
msgqid.

IPC_STAT Fetch the msqid_ds structure for this queue, storing it in the structure
pointed to by buf.

IpC_SET Copy the following fields from the structure pointed to by buf to the
msqid_ds structure associated with this queue: msg perm.uid,
msg_perm.gid, msg_perm.mode, and msg_gbytes. This
command can be executed only by a process whose effective user 1D
equals msg_perm.cuid or msg_perm.uid or by a process with
superuser privileges. Only the superuser can increase the value of
msg_gbytes.

IPC_RMID Remove the message queue from the system and any data still on the
queue. This removal is immediate. Any other process still using the
message queue will get an error of EIDRM on its next attempted
operation on the queue. This command can be executed only by a
process whose effective user ID equals msg perm.cuid or
msg_perm.uid or by a process with superuser privileges.

Section 15.7 Message Queues 525

We'll see that these three commands (I PC_STAT, IPC_SET, and IPC_RMID) are also
provided for semaphores and shared memory.
Data is placed onto a message queue by calling msgsnd.

#include <sys/msg.h>

int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag);

Returns: 0 if OK, —1 on error

As we mentioned earlier, each message is composed of a positive long integer type field,
a non-negative length (nbytes), and the actual data bytes (corresponding to the length).
Messages are always placed at the end of the queue.

The ptr argument points to a long integer that contains the positive integer message
type, and it is immediately followed by the message data. (There is no message data if
nbytes is 0.) If the largest message we send is 512 bytes, we can define the following

structure:
struct mymesg {
long mtype; /* positive message type */
char mtext[512]; /* message data, of length nbytes */

}i

The ptr argument is then a pointer to a mymesg structure. The message type can be
used by the receiver to fetch messages in an order other than first in, first out.

Some platforms support both 32-bit and 64-bit environments. This affects the size of long
integers and pointers. For example, on 64-bit SPARC systems, Solaris allows both 32-bit and
64-bit applications to coexist. If a 32-bit application were to exchange this structure over a pipe
or a socket with a 64-bit application, problems would arise, because the size of a long integer is
4 bytes in a 32-bit application, but 8 bytes in a 64-bit application. This means that a 32-bit
application will expect that the mtext field will start 4 bytes after the start of the structure,
whereas a 64-bit application will expect the mtext field to start 8 bytes after the start of the
structure. In this situation, part of the 64-bit application’s mtype field will appear as part of
the mtext field to the 32-bit application, and the first 4 bytes in the 32-bit application’s mtext
field will be interpreted as a part of the mtype field by the 64-bit application.

This problem doesn’t happen with XSI message queues, however. Solaris implements the
32-bit version of the IPC system calls with different entry points than the 64-bit version of the
IPC system calls. The system calls know how to deal with a 32-bit application communicating
with a 64-bit application, and treat the type field specially to avoid it interfering with the data
portion of the message. The only potential problem is a loss of information when a 64-bit
application sends a message with a value in the 8-byte type field that is larger than will fitina
32-bit application’s 4-byte type field. In this case, the 32-bit application will see a truncated
type value.

A flag value of IPC_NOWAIT can be specified. This is similar to the nonblocking
1/0 flag for file I/O (Section 14.2). 1f the message queue is full (either the total number
of messages on the queue equals the system limit, or the total number of bytes on the
queue equals the system limit), specifying IPC_NOWAIT causes msgsnd to return
immediately with an error of EAGAIN. If IPC_NOWAIT is not specified, we are blocked
until there is room for the message, the queue is removed from the system, or a signal is
caught and the signal handler returns. In the second case, an error of EIDRM is returned
(“identifier removed”); in the last case, the error returned is EINTR.

526 Interprocess Communication Chapter 15

Note how ungracetully the removal of a message queue is handled. Since a
reference count is not maintained with each message queue (as there is for open files),
the removal of a queue simply generates errors on the next queue operation by
processes still using the queue. Semaphores handle this removal in the same fashion.
In contrast, when a file is removed, the file’s contents are not deleted until the last open
descriptor for the file is closed.

When msgsnd returns successfully, the msqid _ds structure associated with the
message queue is updated to indicate the process ID that made the call (msg_1lspid),
the time that the call was made (msg_stime), and that one more message is on the
queue (msg_gnum).

Messages are retrieved from a queue by msgrcv.

#include <sys/msg.h>

!
‘[ssize_t msgrcv(int msgid, void *ptr, size_t nbytes, long type, int flag) ;

Returns: size of data portion of message if OK, -1 on error

As with msgsnd, the ptr argument points to a long integer (where the message type of
the returned message is stored) followed by a data buffer for the actual message data.
nbytes specifies the size of the data buffer. If the returned message is larger than nbytes
and the MSG_NOERROR bit in flag is set, the message is truncated. (In this case, no
notification is given to us that the message was truncated, and the remainder of the
message is discarded.) If the message is too big and this flag value is not specified, an
error of E2BIG is returned instead (and the message stays on the queue).
The type argument lets us specify which message we want.

type == 0 The first message on the queue is returned.

type > 0 The first message on the queue whose message type equals type is
returned.

type < 0 The first message on the queue whose message type is the lowest value
less than or equal to the absolute value of type is returned.

A nonzero type is used to read the messages in an order other than first in, first out. For
example, the type could be a priority value if the application assigns priorities to the
messages. Another use of this field is to contain the process ID of the client if a single
message queue is being used by multiple clients and a single server (as long as a process
ID fits in a long integer).

We can specify a flag value of IPC_NOWAIT to make the operation nonblocking,
causing msgrcv to return —1 with errno set to ENOMSG if a message of the specified
type is not available. If TPC_NOWAIT is not specified, the operation blocks until a
message of the specified type is available, the queue is removed from the system (-1 is
returned with errno set to EIDRM), or a signal is caught and the signal handler returns
(causing msgrcv to return —1 with errno set to EINTR).

When msgrcv succeeds, the kernel updates the msgid_ds structure associated
with the message queue to indicate the caller’s process ID (msg_1rpid), the time of the
call (msg_rtime), and that one less message is on the queue (msg_gnum).

Section 15.8 Sernaphores 527

Example—Timing Comparison of Message Queues versus Stream Pipes

15.8

If we need a bidirectional flow of data between a client and a server, we can use vither
message queues or full-duplex pipes. (Recall from Figure 15.1 that full-duplex pipes are
available through the UNIX domain sockets mechanism (Section 17.3), although some
platforms provide a full-duplex pipe mechanism through the pipe function.)

Figure 15.27 shows a timing comparison of three of these techniques on Solaris:
message queues, STREAMS-based pipes, and UNIX domain sockets. The tests
consisted of a program that created the IPC channel, called fork, and then sent about
200 megabytes of data from the parent to the child. The data was sent using 100,000
calls to msgsnd, with a message length of 2,000 bytes for the message queue, and
100,000 calls to write, with a length of 2,000 bytes for the STREAMS-based pipe and
UNIX domain socket. The times are all in seconds.

Operation | User | System | Clock :
message queue . 057 363 | 422
STREAMS pipe I 050 321 1 37
UNIX domainsocket | 043 ;| 445 | 559

Figure 15.27 Timing comparison of IPC alternatives on Solaris

These numbers show us that message queues, originally implemented to provide
higher-than-normal-speed IPC, are no longer that much faster than other forms of 1IPC
(in fact, STREAMS-based pipes are faster than message queues). (When message
queues were implemented, the only other form of IPC available was half-duplex pipes.)
When we consider the problems in using message queues (Section 15.6.4), we come to
the conclusion that we shouldn’t use them for new applications. O

Semaphores

A semaphore isn’t a form of IPC similar to the others that we've described (pipes,
FIFOs, and message queues). A semaphore is a counter used to provide access to a
shared data object for multiple processes.

The Single UNIX Specification includes an alternate set of semaphore interfaces in the
semaphore option of its real-time extensions. We do not discuss these interfaces in this text.

To obtain a shared resource, a process needs to do the following:

1. Test the semaphore that controls the resource.

2. If the value of the semaphore is positive, the process can use the resource. In
this case, the process decrements the semaphore value by 1, indicating that it
has used one unit of the resource.

3. Otherwise, if the value of the semaphore is 0, the process goes to sleep until the
semaphore value is greater than 0. When the process wakes up, it returns to
step 1.

528 Interprocess Communication Chapter 15

When a process is done with a shared resource that is controlled by a semaphore, the
semaphore value is incremented by 1. If any other processes are asleep, waiting for the
semaphore, they are awakened.

To implement semaphores correctly, the test of a semaphore’s value and the
decrementing of this value must be an atomic operation. For this reason, semaphores
are normally implemented inside the kernel.

A common form of semaphore is called a binary semaphore. It controls a single
resource, and its value is initialized to 1. In general, however, a semaphore can be
initialized to any positive value, with the value indicating how many units of the shared
resource are available for sharing.

XSl semaphores are, unfortunately, more complicated than this. Three features
contribute to this unnecessary complication.

1. A semaphore is not simply a single non-negative value. Instead, we have to
define a semaphore as a set of one or more semaphore values. When we create a
semaphore, we specify the number of values in the set.

2. The creation of a semaphore (semget) is independent of its initialization
(semctl). This is a fatal flaw, since we cannot atomically create a new
semaphore set and initialize all the values in the set.

3. Since all forms of XSI IPC remain in existence even when no process is using
them, we have to worry about a program that terminates without releasing the
semaphores it has been allocated. The undo feature that we describe later is
supposed to handle this.

The kernel maintains a semid_ds structure for each semaphore set:

struct semid_ds ({
struct ipc perm sem perm; /* see Section 15.6.2 */
unsigned short sem_nsems; /* # of semaphores in set */
time_t sem_otime; /* last-semop() time */
time_t sem_ctime; /* last-change time */

b
The Single UNIX Specification defines the fields shown, but implementations can define
additional members in the semid_ds structure.

Each semaphore is represented by an anonymous structure containing at least the
following members:

struct {
unsigned short semval; /* semaphore value, always >= 0 */
pid_t sempid; /* pid for last operation */

unsigned short semncnt; /* # processes awaiting semvals>curval */
unsigned short semzcnt; /* # processes awaiting semval==0 */

Section 15.8 Semaphores 529

Figure 15.28 lists the system limits (Section 15.6.3) that affect semaphore sets.

Typical values i

Description FreeBSD | Linux | Mac OSX | Solaris |

521 2422 103 9 J

The maximum value of any semaphore 32,767 | 32,767 32,767 32,767 |

The maximum value of any semaphore’s adjust-on-exit value 16,384 | 32,767 16,384 16,384 ‘

The maximum number of semaphore sets, systemwide 10 128 87,381 10 1
The maximum number of semaphores, systemwide 60 32,000 87,381 60
The maximum number of semaphores per semaphore set 60 250 87,381 25
The maximum number of undo structures, systemwide 30 32,000 87,381 30
The maximum number of undo entries per undo structures 10 32 10 10
The maximum number of operations per semop call 100 32 100 10

Figure 15.28 System limits that affect semaphores

The first function to call is semget to obtain a semaphore ID.

#include <sys/sem.h>

int semget (key t key, int nsems, int flag);

Returns: semaphore ID if OK, -1 on error

In Section 15.6.1, we described the rules for converting the key into an identifier and
discussed whether a new set is created or an existing set is referenced. When a new set
is created, the following members of the semid_ds structure are initialized.

e The ipc_perm structure is initialized as described in Section 15.6.2. The mode
member of this structure is set to the corresponding permission bits of flag.
These permissions are specified with the values from Figure 15.24.

e sem otimeissetto0.

e sem_ctime is set to the current time.

e sem_nsems is set to nsems.

The number of semaphores in the set is nsems. If a new set is being created
(typically in the server), we must specify nsems. 1f we are referencing an existing set (a

client), we can specify nsems as 0.
The semct 1 function is the catchall for various semaphore operations.

#include <sys/sem.h>

int semctl (int semid, int semnum, int cmd,
/* union semun arg */);

Returns: (see following)

The fourth argument is optional, depending on the command requested, and if present,
is of type semun, a union of various command-specific arguments:

530

Interprocess Communication Chapter 15

union semun {

int

val; /* for SETVAL */

struct semid_ds *buf; /* for IPC STAT and IPC SET */
unsigned short *array; /* for GETALL and SETALL */

}s

Note that the optional argument is the actual union, not a pointer to the union.

The cmid argument specifies one of the following ten commands to be performed on
the set specified by semid. The five commands that refer to one particular semaphore
value use semnum to specify one member of the set. The value of semnum is between 0
and nsems—1, inclusive.

IPC_STAT

IPC_SET

IPC_RMID

GETVAL
SETVAL

GETPID
GETNCNT
GETZCNT
GETALL

SETALL

Fetch the semid_ds structure for this set, storing it in the structure
pointed to by arg.buf.

Set the sem_perm.uid, sem_perm.gid, and sem perm.mode fields
from the structure pointed to by arg.buf in the semid_ds structure
associated with this set. This command can be executed only by a
process whose effective user ID equals sem perm.cuid or
sem_perm.uid or by a process with superuser privileges.

Remove the semaphore set from the system. This removal is
immediate. Any other process still using the semaphore will get an
error of EIDRM on its next attempted operation on the semaphore.
This command can be executed only by a process whose effective user
ID equals sem_perm.cuid or sem_perm.uid or by a process with
superuser privileges.

Return the value of semval for the member semnum.

Set the value of semval for the member semnum. The value is
specified by arg.val.

Return the value of sempid for the member semnum.
Return the value of semnent for the member semnum.
Return the value of semzcnt for the member semnuni.

Fetch all the semaphore values in the set. These values are stored in
the array pointed to by arg.array.

Set all the semaphore values in the set to the values pointed to by
arg.array.

For all the GET commands other than GETALL, the function returns the corresponding
value. For the remaining commands, the return value is 0.
The function semop atomically performs an array of operations on a semaphore set.

#include <sys/sem.h>

int semop({int semid, struct sembuf semoparray[], size t nops);

Returns: 0 if OK, -1 on error

Section 15.8 Semaphores 531

The semoparray argument is a pointer to an array of semaphore operations, represented
by sembuf structures:

struct sembuf {

unsigned short sem_ num; /* member # in set (0, 1, ..., nsems-1) */
short sem_op; /* operation (negative, 0, or positive) */
short sem flg; /* IPC NOWAIT, SEM_UNDO */

Vi

The nops argument specifies the number of operations (elements) in the array.

The operation on each member of the set is specified by the corresponding sem_op
value. This value can be negative, 0, or positive. (In the following discussion, we refer
to the “undo” flag for a semaphore. This flag corresponds to the SEM_UNDO bit in the
corresponding sem_f1g member.)

1. The easiest case is when sem_op is positive. This case corresponds to the
returning of resources by the process. The value of sem_op is added to the
semaphore’s value. If the undo flag is specified, sem_op is also subtracted from
the semaphore’s adjustment value for this process.

2. If sem_op is negative, we want to obtain resources that the semaphore controls.

If the semaphore’s value is greater than or equal to the absolute value of
sem_op (the resources are available), the absolute value of sem_op is subtracted
from the semaphore’s value. This guarantees that the resulting value for the
semaphore is greater than or equal to 0. If the undo flag is specified, the
absolute value of sem_op is also added to the semaphore’s adjustment value for
this process.

If the semaphore’s value is less than the absolute value of sem_op (the resources
are not available), the following conditions apply.

a. If IPC_NOWAIT is specified, semop returns with an error of EAGAIN.

b. If IPC_NOWAIT is not specified, the semncnt value for this semaphore is
incremented (since the caller is about to go to sleep), and the calling process
is suspended until one of the following occurs.

i. The semaphore’s value becomes greater than or equal to the absolute
value of sem_op (i.e., some other process has released some resources).
The value of semncnt for this semaphore is decremented (since the
calling process is done waiting), and the absolute value of sem_op is
subtracted from the semaphore’s value. If the undo flag is specified, the
absolute value of sem_op is also added to the semaphore’s adjustment
value for this process.

ii. The semaphore is removed from the system. In this case, the function
returns an error of EIDRM.

iii. A signalis caught by the process, and the signal handler returns. In this
case, the value of semncnt for this semaphore is decremented (since the

532 Interprocess Communication Chapter 15

calling process is no longer waiting), and the function returns an error
of EINTR.

3. If sem_op is 0, this means that the calling process wants to wait until the
semaphore’s value becomes 0.

If the semaphore’s value is currently 0, the function returns immediately.
If the semaphore’s value is nonzero, the following conditions apply.
If IPC_NOWAIT is specified, return is made with an error of EAGAIN.

b. If IPC_NOWAIT is not specified, the semzcnt value for this semaphore is
incremented (since the caller is about to go to sleep), and the calling process
is suspended until one of the following occurs.

i. The semaphore’s value becomes 0. The value of semzcnt for this
semaphore is decremented (since the calling process is done waiting).

ii. The semaphore is removed from the system. In this case, the function
returns an error of EIDRM.

iii. A signal is caught by the process, and the signal handler returns. In this
case, the value of semzent for this semaphore is decremented (since the
calling process is no longer waiting), and the function returns an error
of EINTR.

The semop function operates atomically; it does either all the operations in the array or
none of them.

Semaphore Adjustment on exit

As we mentioned earlier, it is a problem if a process terminates while it has resources
allocated through a semaphore. Whenever we specify the SEM_UNDO flag for a
semaphore operation and we allocate resources (a sem_op value less than 0), the kernel
remembers how many resources we allocated from that particular semaphore (the
-absolute value of sem_op). When the process terminates, either voluntarily or
involuntarily, the kernel checks whether the process has any outstanding semaphore
adjustments and, if so, applies the adjustment to the corresponding semaphore.
If we set the value of a semaphore using semctl, with either the SETVAL or
SETALL commands, the adjustment value for that semaphore in all processes is set to 0.

Example—Timing Comparison of Semaphores versus Record Locking

If we are sharing a single resource among multiple processes, we can use either a
semaphore or record locking. It’s interesting to compare the timing differences between
the two techniques.

Section 15.9 Shared Memory 533

15.9

With a semaphore, we create a semaphore set consisting of a single member and
initialize the semaphore’s value to 1. To allocate the resource, we call semop with a
sem_op of —1; to release the resource, we perform a sem_op of +1. We also specify
SEM_UNDO with each operation, to handle the case of a process that terminates without
releasing its resource. :

With record locking, we create an empty file and use the first byte of the file (which
need not exist) as the lock byte. To allocate the resource, we obtain a write lock on the
byte; to release it, we unlock the byte. The properties of record locking guarantee that if
a process terminates while holding a Jock, then the lock is automatically released by the
kernel.

Figure 15.29 shows the time required to perform these two locking techniques on
Linux. In each case, the resource was allocated and then released 100,000 times. This
was done simultaneously by three different processes. The times in Figure 15.29 are the
totals in seconds for all three processes.

Operation User System | Clock
semaphores with undo 0.38 0.48 0.86
advisory record locking 0.41 0.95 1.36

Figure 15.29 Timing comparison of locking alternatives on Linux

On Linux, there is about a 60 percent penalty in the elapsed time for record locking
compared to semaphore locking.

Even though record locking is slower than semaphore locking, if we’re locking a
single resource (such as a shared memory segment) and don’t need all the fancy
features of XSI semaphores, record locking is preferred. The reasons are that it is much
simpler to use, and the system takes care of any lingering locks when a process
terminates. O

Shared Memory

Shared memory allows two or more processes to share a given region of memory. This
is the fastest form of IPC, because the data does not need to be copied between the client
and the server. The only trick in using shared memory is synchronizing access to a
given region among multiple processes. If the server is placing data into a shared
memory region, the client shouldnt try to access the data until the server is done.
Often, semaphores are used to synchronize shared memory access. (But as we saw at
the end of the previous section, record locking can also be used.)

The Single UNIX Specification includes an alternate set of interfaces to access shared memory
in the shared memory objects option of its real-time extensions. We do not cover the real-time
extensions in this text.

The kernel maintains a structure with at least the following members for each
shared memory segment:

534

Interprocess Communication

Chapter 15

struct shmid ds {
struct ipc_perm shm_perm;

size t shm_segsz;
pid_t shm_lpid;
pid_t shm_cpid;
shmatt t shm nattch;
time_t shm_atime;
time t shm_dtime;
time_t shm ctime;

}:.

/*
/*
/*
/*
/*
/*
/*
/*

(Each implementation adds other structure

memory segments.)

see Section 15.6.2 */

size of segment in bytes */
pid of last shmop() */

pid of creator */

number of current attaches */
last-attach time */
last-detach time */
last-change time */

members as needed to support shared

The type shmatt_t is defined to be an unsigned integer at least as large as an
unsigned short. Figure 15.30 lists the system limits (Section 15.6.3) that affect shared

memory.

Description

Typical values
FreeBSD Linux MacOS X | Solaris
521 2.4.22 10.3 9

systemwide

process

The maximum size in bytes of a shared memory segment | 33,554,432 | 33,554,432 | 4,194,304 | 8,388,608
- The minimum size in bytes of a shared memory segment 1 1 1 1
i The maximum number of shared memory segments,

The maximum number of shared memory segments, per

192 4,096 32 100

128 4,096 8 6

Figure 15.30 System limits that affect shared memory

The first function called is usually shmget, to obtain a shared memory identifier.

[#include <sys/shm.h>

int shmget (key_t key, size_t size, int flag) ;

Returns: shared memory ID if OK, -1 on error

In Section 15.6.1, we described the rules for converting the key into an identifier and
whether a new segment is created or an existing segment is referenced. When a new
segment is created, the following members of the shmid_ds structure are initialized.

* The ipc_perm structure is initialized as described in Section 15.6.2. The mode
member of this structure is set to the corresponding permission bits of flag.
These permissions are specified with the values from Figure 15.24.

* shm_lpid, shm_nattach, shm_atime, and shm_dtime are all set to 0.

®* shm_ctime is set to the current time.

* shm_segsz is set to the size requested.

Section 15.9 Shared Memory 535

The size parameter is the size of the shared memory segment in bytes.
Implementations will usually round up the size to a multiple of the system’s page size,
but if an application specifies size as a value other than an integral multiple of the
system’s page size, the remainder of the last page will be unavailable for use. If a new
segment is being created (typically in the server), we must specify its size. If we are
referencing an existing segment (a client), we can specify size as 0. When a new segment
is created, the contents of the segment are initialized with zeros.

The shmct 1 function is the catchall for various shared memory operations.

#include <sys/shm.h>

int shmetl (int shmid, int ond, struct shmid ds *buf) ;

Returns: 0 if OK, -1 on error i

The cmd argument specifies one of the following five commands to be pertormed,
on the segment specified by shmid.

1pC_STAT Fetch the shmid_ds structure for this segment, storing it in the
structure pointed to by buf.

IPC SET Set the following three fields from the structure pointed to by buf in
the shmid_ds structure associated with this shared memory segment:
shm perm.uid, shm perm.gid, and shm perm.mode. This
command can be executed only by a process whose effective user ID
equals shm_perm.cuid or shm_perm.uid or by a process with
superuser privileges.

IPC_RMID Remove the shared memory segment set from the system. Since an
attachment count is maintained for shared memory segments (the
shm_nattch field in the shmid_ds structure), the segment is not
removed until the last process using the segment terminates or
detaches it. Regardless of whether the segment is still in use, the
segment’s identifier is immediately removed so that shmat can no
longer attach the segment. This command can be executed only by a
process whose effective user ID equals shm_perm.cuid or
shm_perm.uid or by a process with superuser privileges.

Two additional commands are provided by Linux and Solaris, but are not part of the
Single UNIX Specification.

SHM_LOCK Lock the shared memory segment in memory. This command can
be executed only by the superuser.

SHM_UNLOCK Unlock the shared memory segment. This command can be
executed only by the superuser.

Once a shared memory segment has been created, a process attaches it to its address
space by calling shmat.

536 Interprocess Communication Chapter 15

#include <sys/shm.h>

void *shmat (int shmid, const void *addr, int flag) ;

Returns: pointer to shared memory segment if OK, ~1 on error

The address in the calling process at which the segment is attached depends on the addr
argument and whether the SHM_RND bit is specified in flag.

* Ifaddris O, the segment is attached at the first available address selected by the
kernel. This is the recommended technique.

* If addr is nonzero and SHM_RND is not specified, the segment is attached at the
address given by addr.

* If addr is nonzero and SHM_RND is specified, the segment is attached at the
address given by (addr — (addr modulus SHMLBA)). The SHM RND command
stands for “round.” SHMLBA stands for “low boundary address multiple” and is
always a power of 2. What the arithmetic does is round the address down to the
next multiple of SHMLBA.

Unless we plan to run the application on only a single type of hardware (which is
highly unlikely today), we should not specify the address where the segment is to be
attached. Instead, we should specify an addr of 0 and let the system choose the address.

If the SHM_RDONLY bit is specified in flag, the segment is attached read-only.
Otherwise, the segment is attached read—write.

The value returned by shmat is the address at which the segment is attached, or -1
if an error occurred. If shmat succeeds, the kernel will increment the shm_nattch
counter in the shmid_ds structure associated with the shared memory segment.

When we’re done with a shared memory segment, we call shmdt to detach it. Note
that this does not remove the identifier and its associated data structure from the
system. The identifier remains in existence until some process (often a server)
specifically removes it by calling shmct1 with a command of IPC_RMID.

#include <sys/shm.hs.
int shmdt (void *addr) ;

Returns: 0 if OK, ~1 on error

The addr argument is the value that was returned by a previous call to shmat. If
successful, shmdt will decrement the shm_nattch counter in the associated shmid_ds
structure. *

Example
Where a kernel places shared memory segments that are attached with an address of 0
is highly system dependent. Figure 1531 shows a program that prints some
information on where one particular system places various types of data.

Section 15.9

Shared Memory

537

#include "apue.h"
#include <sys/shm.h>

#define ARRAY SIZE 40000
#define MALLOC SIZE 100000
#define SHM SIZE 100000
#define SHM_MODE 0600 /* user read/write */

char array [ARRAY SIZE]; /* uninitialized data = bss */

int
main (void)
{
int shmid;
char *ptr, *shmptr;

printf ("array[] from %1lx to $1x\n", (unsigned long) &array (0],

(unsigned long) &array [ARRAY_SIZE});
printf ("stack around %lx\n", (unsigned long) &shmid) ;

if ((ptr = malloc (MALLOC_SIZE)) == NULL)
err_sys("malloc error");
printf ("malloced from $1x to %1x\n", (unsigned long)ptr,
(unsigned long)ptr+MALLOC_SIZE);

if ((shmid = shmget (IPC_PRIVATE, SHM_SIZE, SHM_MODE)) < 0)
err_sys ("shmget error"};
if ((shmptr = shmat (shmid, 0, 0)) == (void *)-1)
err_sys("shmat error");
printf ("shared memory attached from %1x to %lx\n",
(unsigned long) shmptr, (unsigned long) shmptr+SHM_SIZE) ;

if (shmetl (shmid, IPC_RMID, 0) < 0)
err_sys("shmetl error") ;

exit (0);

Figure 1531 Print where various types of data are stored

Running this program on an Intel-based Linux system gives us the following output:

$./a.out

array[] from 804a080 to 8053ccO

stack around bffffoe4

malloced from 8053cc8 to 806c368

shared memory attached from 40162000 to 4017a6a0

Figure 15.32 shows a picture of this, similar to what we said was a typical memory
layout in Figure 7.6. Note that the shared memory segment is placed well below the

stack.

O

538 Interprocess Communication Chapter 15

high address| "\ command-line arguments

and environment variables

L stack J& Oxbffffoed
- I
(—- 0x4017a6a0
shared memory shared memory of 100,000 bytes
o |=—0x40162000 .
hea <—-Ox0806c3681
P malloc of 100,000 bytes
—— 0x08053ccs8
P . e—— 0x08053cco
| uninitialized data array [] of 40,000 bytes
(bss) 4—— 0x0804a080)

‘ initialized data

text

low address]

Figure 1532 Memory layout on an Intel-based Linux system

Recall that the mmap function (Section 14.9) can be used to map portions of a file
into the address space of a process. This is conceptually similar to attaching a shared
memory segment using the shmat XSI IPC function. The main difference is that the
memory segment mapped with mmap is backed by a file, whereas no file is associated
with an XSI shared memory segment.

Example—Memory Mapping of /dev/zero

Shared memory can be used between unrelated processes. But if the processes are
related, some implementations provide a different technique.

The following technique works on FreeBSD 5.2.1, Linux 2.4.22, and Solaris 9. Mac O$ X 10.3
currently doesn’t support the mapping of character devices into the address space of a process.

The device /dev/zero is an infinite source of 0 bytes when read. This device also
accepts any data that is written to it, ignoring the data. Our interest in this device for
IPC arises from its special properties when it is memory mapped.

* An unnamed memory region is created whose size is the second argument to
mmap, rounded up to the nearest page size on the system.

* The memory region is initialized to 0.

* Multiple processes can share this region if a common ancestor specifies the
MAP_SHARED flag to mmap.

The program in Figure 15.33 is an example that uses this special device.

Section 15.9 Shared Memory 539

#include "apue.h"
#include <fcntl.h>
#include <sys/mman.h>

#define NLOOPS 1000
#define SIZE sizeof (long) /* size of shared memory area */

static int
update (long *ptr)

{

return({*ptr)++); /* return value before increment */
int
main (void)

int fd, i, counter;

pid_t pid;

void *area;

if ((fd = open("/dev/zero", O_RDWR)) < 0)
err_sys("open error");
if ((area = mmap(0, SIZE, PROT_READ | PROT WRITE, MAP_SHARED,

£4, 0)) == MAP_FAILED)
err_sys ("mmap error") ;)
close (fd); /* can close /dev/zero now that it’s mapped */

TELL _WAIT();

if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid > 0) { /* parent */
for (i = 0; i < NLOOPS; i += 2) {
if ((counter = update((long *)area)) != 1)

err_quit ("parent: expected $d, got %d", i, counter);

TELL_CHILD (pid) ;
WAIT CHILD();

}
} else { /* child */
for (i = 1; i < NLOOPS + 1; i += 2) {
WAIT PARENT();

if ((counter = update((long *)area)) != 1)
err_quit("child: expected %d, got %d", i, counter);

TELL_PARENT (getppid ()) ;

}

exit (0) ;

Figure 1533 [PC between parent and child using memory mapped I/0 of /dev/zero

540 Interprocess Communication Chapter 15

The program opens the /dev/zero device and calls mmap, specifying a size of a
long integer. Note that once the region is mapped, we can close the device. The
process then creates a child. Since MAP_SHARED was specified in the call to mmap,
writes to the memory-mapped region by one process are seen by the other process. (If
we had specified MAP_PRIVATE instead, this example wouldn’t work.)

The parent and the child then alternate running, incrementing a long integer in the
shared memory-mapped region, using the synchronization functions from Section 8.9.
The memory-mapped region is initialized to 0 by mmap. The parent increments it to 1,
then the child increments it to 2, then the parent increments it to 3, and so on. Note that
we have to use parentheses when we increment the value of the long integer in the
update function, since we are incrementing the value and not the pointer.

The advantage of using /dev/zero in the manner that we’ve shown is that an
actual file need not exist before we call mmap to create the mapped region. Mapping
/dev/zero automatically creates a mapped region of the specified size. The
disadvantage of this technique is that it works only between related processes. With
related processes, however, it is probably simpler and more efficient to use threads
(Chapters 11 and 12). Note that regardless of which technique is used, we still need to
synchronize access to the shared data. o

Example—Anonymous Memory Mapping

Many implementations provide anonymous memory mapping, a facility similar to the
/dev/zero feature. To use this facility, we specify the MAP_ANON flag to mmap and
specify the file descriptor as —1. The resulting region is anonymous (since it’s not
associated with a pathname through a file descriptor) and creates a memory region that
can be shared with descendant processes.

The anonymous memory-mapping facility is supported by all four platforms discussed in this
text. Note, however, that Linux defines the MAP_ANONYMOUS flag for this facility, but defines
-the MAP_ANON flag to be the same value for improved application portability.

To modify the program in Figure 15.33 to use this facility, we make three changes:
(a) remove the open of /dev/zero, (b) remove the close of £4, and (c) change the call
to mmap to the following:

if ((area = mmap(0, SIZE, PROT_READ | PROT WRITE,
MAP_ANON | MAP_SHARED, -1, 0)) == MAP_FAILED)

In this call, we specify the MAP_ANON flag and set the file descriptor to —1. The rest of
the program from Figure 15.33 is unchanged. O

The last two examples illustrate sharing memory among multiple related processes.
If shared memory is required between unrelated processes, there are two alternatives.
Applications can use the XSI shared memory functions, or they can use mmap to map
the same file into their address spaces using the MAP_SHARED flag.

Section 15.10 Client-Server Properties 541

15.10 Client-Server Properties

Let’s detail some of the properties of clients and servers that are affected by the various
types of IPC used between them. The simplest type of relationship is to have the client
fork and exec the desired server. Two half-duplex pipes can be created before the
fork to allow data to be transferred in both directions. Figure 15.16 is an example of
this. The server that is executed can be a set-user-ID program, giving it special
privileges. Also, the server can determine the real identity of the client by looking at its
real user ID. (Recall from Section 8.10 that the real user ID and real group 1D don't
change across an exec.)

With this arrangement, we can build an open server. (We show an implementation of
this client-server in Section 17.5.) It opens files for the client instead of the client calling
the open function. This way, additional permission checking can be added, above and
beyond the normal UNIX system user/ group/other permissions. We assume that the
server is a set-user-ID program, giving it additional permissions (root permission,
perhaps). The server uses the real user ID of the client to determine whether to give it
access to the requested file. This way, we can build a server that allows certain users
permissions that they don’t normally have.

In this example, since the server is a child of the parent, all the server can do is pass
back the contents of the file to the parent. Although this works fine for regular files, it
can’t be used for special device files, for example. We would like to be able to have the
server open the requested file and pass back the file descriptor. Whereas a parent can
pass a child an open descriptor, a child cannot pass a descriptor back to the parent
(unless special programming techniques are used, which we cover in Chapter 17).

We showed the next type of server in Figure 15.23. The server is a daemon process
that is contacted using some form of IPC by all clients. We can’t use pipes for this type
of client—server. A form of named IPC is required, such as FIFOs or message queues.
With FIFOs, we saw that an individual per client FIFO is also required if the server is to
send data back to the client. If the client-server application sends data only from the
client to the server, a single well-known FIFO suffices. (The System V line printer
spooler used this form of client-server arrangement. The client was the 1p(1)
command, and the server was the 1psched daemon process. A single FIFO was used,
since the flow of data was only from the client to the server. Nothing was sent back to
the client.)

Multiple possibilities exist with message queues.

1. A single queue can be used between the server and all the clients, using the type
field of each message to indicate the message recipient. For example, the clients
can send their requests with a type field of 1. Included in the request must be
the client’s process ID. The server then sends the response with the type field
set to the client’s process ID. The server receives only the messages with a type
field of 1 (the fourth argument for msgrcv), and the clients receive only the
messages with a type field equal to their process [Ds.

2. Alternatively, an individual message queue can be used for each client. Before
sending the first request to a server, each client creates its own message queue

542 Interprocess Communication Chapter 15

with a key of IPC_PRIVATE. The server also has its own queue, with a key or
identifier known to all clients. The client sends its first request to the server’s
well-known queue, and this request must contain the message queue ID of the
client’s queue. The server sends its first response to the client’s queue, and all
future requests and responses are exchanged on this queue.

One problem with this technique is that each client-specific queue usually has
only a single message on it: a request for the server or a response for a client.
This seems wasteful of a limited systemwide resource (a message queue), and a
FIFO can be used instead. Another problem is that the server has to read
messages from multiple queues. Neither select nor poll works with
message queues.

Either of these two techniques using message queues can be implemented using shared
memory segments and a synchronization method (a semaphore or record locking).

The problem with this type of client-server relationship (the client and the server
being unrelated processes) is for the server to identify the client accurately. Unless the
server is performing a nonprivileged operation, it is essential that the server know who
the client is. This is required, for example, if the server is a set-user-ID program.
Although all these forms of IPC go through the kernel, there is no facility provided by
them to have the kernel identify the sender.

With message queues, if a single queue is used between the client and the server (so
that only a single message is on the queue at a time, for example), the msg_1spid of the
queue contains the process ID of the other process. But when writing the server, we
want the effective user ID of the client, not its process ID. There is no portable way to
obtain the effective user ID, given the process ID. (Naturally, the kernel maintains both
values in the process table entry, but other than rummaging around through the kernel’s
memory, we can’t obtain one, given the other.)

We'll use the following technique in Section 17.3 to allow the server to identify the
client. The same technique can be used with FIFOs, message queues, semaphores, or
shared memory. For the following description, assume that FIFOs are being used, as in
Figure 15.23. The client must create its own FIFO and set the file access permissions of
the FIFO so that only user-read and user-write are on. We assume that the server has
superuser privileges (or else it probably wouldn't care about the client’s true identity),
so the server can still read and write to this FIFO. When the server receives the client’s
first request on the server’s well-known FIFO (which must contain the identity of the
client-specific FIFO), the server calls either stat or fstat on the client-specific FIFO.
The server assumes that the effective user ID of the client is the owner of the FIFO (the
st_uid field of the stat structure). The server verifies that only the user-read and
user-write permissions are enabled. As another check, the server should also look at the
three times associated with the FIFO (the st _atime, st_mtime, and st_ctime fields
of the stat structure) to verify that they are recent (no older than 15 or 30 seconds, for
example). If a malicious client can create a FIFO with someone else as the owner and
set the file’s permission bits to user-read and user-write only, then the system has other
fundamental security problems. :

Chapter 15 Exercises 543

15.11

To use this technique with XSI IPC, recall that the ipc_perm structure associated
with each message queue, semaphore, and shared memory segment identifies the
creator of the IPC structure (the cuid and cgid fields). As with the example using
FIFOs, the server should require the client to create the IPC structure and have the client
set the access permissions to user-read and user-write only. The times associated with
the IPC structure should also be verified by the server to be recent (since these IPC
structures hang around until explicitly deleted).

We'll see in Section 17.2.2 that a far better way of doing this authentication is for the
kernel to provide the effective user ID and effective group ID of the client. This is done
by the STREAMS subsystem when file descriptors are passed between processes.

Summary

We've detailed numerous forms of interprocess communication: pipes, namec. pipes
(FIFOs), and the three forms of IPC commonly called XSI IPC (message queues,
semaphores, and shared memory). Semaphores are really a synchronization primitive,
not true IPC, and are often used to synchronize access to a shared resource, such as a
shared memory segment. With pipes, we looked at the implementation of the popen
function, at coprocesses, and the pitfalls that can be encountered with the standard 1/0
library’s buffering.

After comparing the timing of message queues versus full-duplex pipes, and
semaphores versus record locking, we can make the following recommendations: learn
pipes and FIFOs, since these two basic techniques can still be used effectively in
numerous applications. Avoid using message queues and semaphores in any new
applications. Full-duplex pipes and record locking should be considered instead, as
they are far simpler. Shared memory still has its use, although the same functionality
can be provided through the use of the mmap function (Section 14.9).

In the next chapter, we will look at network IPC, which can allow processes to
communicate across machine boundaries.

Exercises

15.1 In the program shown in Figure 15.6, remove the close right before the waitpid at the
end of the parent code. Explain what happens.

15.2 In the program in Figure 15.6, remove the waitpid at the end of the parent code. Explain
what happens.

15.3 What happens if the argument to popen is a nonexistent command? Write a small program
to test this.

154 In the program shown in Figure 15.18, remove the signal handler, execute the program, and
then terminate the child. After entering a line of input, how can you tell that the parent was
terminated by SIGPIPE?

155 In the program in Figure 15.18, use the standard 1/0 library for reading and writing the
pipes instead of read and write.

544

Interprocess Communication Chapter 15

15.6 The Rationale for POSIX.1 gives as one of the reasons for adding the waitpid function that
most pre-POSIX.1 systems can’t handle the following:

if ((fp = popen("/bin/true", "r")) == NULL)
if ((rc = system("sleep 100")) == -1)

if (pclose (fp) == -1)

What happens in this code if waitpid isn’t available and wait is used instead?

15.7 Explain how select and poll handle an input descriptor that is a pipe, when the pipe is
closed by the writer. To determine the answer, write two small test programs: one using
select and one using poll.

Redo this exercise, looking at an output descriptor that is a pipe, when the read end is
closed.

15.8 What happens if the cmdstring executed by popen with a type of "r" writes to its standard
error?

15.9 Since popen invokes a shell to execute its cmdstring argument, what happens when
cmdstring terminates? (Hint: draw all the processes involved.)

15.10 POSIX.1 specifically states that opening a FIFO for read-write is undefined. Although most
UNIX systems allow this, show another method for opening a FIFO for both reading and
writing, without blocking.

15.11 Unless a file contains sensitive or confidential data, allowing other users to read the file
causes no harm. (It is usually considered antisocial, however, to go snooping around in
other people’s files.) But what happens if a malicious process reads a message from a
message queue that is being used by a server and several clients? What information does
the malicious process need to know to read the message queue?

15.12 Write a program that does the following. Execute a loop five times: create a message queue,
print the queue identifier, delete the message queue. Then execute the next loop five times:
create a message queue with a key of IPC_PRIVATE, and place a message on the queue.
After the program terminates, look at the message queues using ipcs(1). Explain what is
happening with the queue identifiers.

15.13 Describe how to build a linked list of data objects in a shared memory segment. What
would you store as the list pointers?

15.14 Draw a time line of the program in Figure 15.33 showing the value of the variable i in both
the parent and child, the value of the long integer in the shared memory region, and the
value returned by the update function. Assume that the child runs first after the fork.

15.15 Redo the program in Figure 15.33 using the XSI shared memory functions from Section 15.9
instead of the shared memory-mapped region.

15.16 Redo the program in Figure 15.33 using the XSI semaphore functions from Section 15.8 to
alternate between the parent and the child.

15.17 Redo the program in-Figure 15.33 using advisory record locking to alternate between the
parent and the child.

16.1

16

Network IPC: Sockefs

Introduction

In the previous chapter, we looked at pipes, FIFOs, message queues, semaphores, and
shared memory: the classical methods of IPC provided by various UNIX systems.
These mechanisms allow processes running on the same computer to communicate
with one another. In this chapter, we look at the mechanisms that allow processes
running on different computers (connected to a common network) to communicate with
one another: network IPC.

In this chapter, we describe the socket network IPC interface, which can be used by
processes to communicate with other processes, regardless of where they are running:
on the same machine or on different machines. Indeed, this was one of the design goals
of the socket interface. The same interfaces can be used for both intermachine
communication and intramachine communication. Although the socket interface can be
used to communicate using many different network protocols, we will restrict our
discussion to the TCP/IP protocol suite in this chapter, since it is the de facto standard
for communicating over the Internet.

The socket API as specified by POSIX.1 is based on the 4.4BSD socket interface.
Although minor changes have been made over the years, the current socket interface
closely resembles the interface when it was originally introduced in 4.2BSD in the early
1980s.

This chapter is only an overview of the socket AP Stevens, Fenner, and Rudoff
[2004] discuss the socket interface in detail in the definitive text on network
programming in the UNIX System.

545

546

Network IPC: Sockets Chapter 16

16.2

Socket Descriptors

A socket is an abstraction of a communication endpoint. Just as they would use file
descriptors to access a file, applications use socket descriptors to access sockets. Socket
descriptors are implemented as file descriptors in the UNIX System. Indeed, many of
the functions that deal with file descriptors, such as read and write, will work with a
socket descriptor.

To create a socket, we call the socket function.

#include <sys/socket.h>

int socket (int domain, int type, int protocol) ;

Returns: file (socket) descriptor if OK, -1 on error

The domain argument determines the nature of the communication, including the
address format (described in more detail in the next section). Figure 16.1 summarizes
the domains specified by POSIX.1. The constants start with AF_ (for address family)
because each domain has its own format for representing an address.

Domain Description
AF_INET IPv4 [nternet domain
AF_INET6 IPv6 Internet domain
AF_UNIX UNIX domain
AF_UNSPEC | unspecified

Figure 16.1 Socket communication domains

We discuss the UNIX domain in Section 17.3. Most systems define the AF_LOCAL
domain also, which is an alias for AF_UNIX. The AF_UNSPEC domain is a wildcard that
represents “any” domain. Historically, some platforms provide support for additional
network protocols, such as AF_IPX for the NetWare protocol family, but domain
constants for these protocols are not defined by the POSIX.1 standard.

The type argument determines the type of the socket, which further determines the
communication characteristics. The socket types defined by POSIX.1 are summarized in
Figure 16.2, but implementations are free to add support for additional types.

Type Description
SOCK_DGRAM fixed-length, connectionless, unreliable messages
SOCK_RAW datagram interface to IP (optional in POSIX.1)
SOCK_SEQPACKET | fixed-length, sequenced, reliable, connection-oriented messages
SOCK_STREAM sequenced, reliable, bidirectional, connection-oriented byte streams

Figure 16.2 Socket types

The protocol argument is usually zero, to select the default protocol for the given
domain and socket type. When multiple protocols are supported for the same domain

Section 16.2 ‘ Socket Descriptors 547

and socket type, we can use the protocol argument to select a particular protocol. The
default protocol for a SOCK_STREAM socket in the AF_INET communication domain is
TCP (Transmission Control Protocol). The default protocol for a SOCK_DGRAM socket in
the AF_INET communication domain is UDP (User Datagram Protocol).

With a datagram (SOCK_DGRAM) interface, no logical connection needs to exist
between peers for them to communicate. All you need to do is send a message
addressed to the socket being used by the peer process.

A datagram, therefore, provides a connectionless service. A byte stream
(SOCK_STREAM), on the other hand, requires that, before you can exchange data, you set
up a logical connection between your socket and the socket belonging to the peer you
want to communicate with.

A datagram is a self-contained message. Sending a datagram is analogous to
mailing someone a letter. You can mail many letters, but you can’t guarantee the order
of delivery, and some might get lost along the way. Each letter contains the address of
the recipient, making the letter independent from all the others. Each letter can even go
to different recipients.

In contrast, using a connection-oriented protocol for communicating with a peer is
like making a phone call. First, you need to establish a connection by placing a phone
call, but after the connection is in place, you can communicate bidirectionally with each
other. The connection is a peer-to-peer communication channel over which you talk.
Your words contain no addressing information, as a point-to-point virtual connection
exists between both ends of the call, and the connection itself implies a particular source
and destination.

With a SOCK_STREAM socket, applications are unaware of message boundaries,
since the socket provides a byte stream service. This means that when we read data
from a socket, it might not return the same number of bytes written by the process
sending us data. We will eventually get everything sent to us, but it might take several
function calls.

A SOCK_SEQPACKET socket is just like a SOCK_STREAM socket except that we get a
message-based service instead of a byte-stream service. This means that the amount of
data received from a SOCK_SEQPACKET socket is the same amount as was written. The
Stream Control Transmission Protocol (SCTP) provides a sequential packet service in
the Internet domain.

A SOCK_RAW socket provides a datagram interface directly to the underlying
network layer (which means IP in the Internet domain). Applications are responsible
for building their own protocol headers when using this interface, because the transport
protocols (TCP and UDP, for example) are bypassed. Superuser privileges are required
to create a raw socket to prevent malicious applications from creating packets that
might bypass established security mechanisms.

Calling socket is similar to calling open. In both cases, you get a file descriptor
that can be used for I/O. When you are done using the file descriptor, you call close
to relinquish access to the file or socket and free up the file descriptor for reuse.

Although a socket descriptor is actually a file descriptor, you can’t use a socket
descriptor with every function that accepts a file descriptor argument. Figure 16.3
summarizes most of the functions we’ve described so far that are used with file

548 Network IPC: Sockets Chapter 16

descriptors and describes how they behave when used with a socket descriptor.
Unspecified and implementation-defined behavior usually means that the function
doesn’t work with socket descriptors. For example, 1seek doesn’t work with sockets,
since sockets don’t support the concept of a file offset.

Function Behavior with socket

close (Section 3.3) deallocates the socket

dup, dup2 (Section 3.12) duplicates the file descriptor as normal

fchdir (Section 4.22) fails with errno set to ENOTDIR

fchmod (Section 4.9) unspecified

fchown (Section 4.11) implementation defined

fentl (Section 3.14) some commands supported, including F_DUPFD, F_GETFD,
F_GETFL, F_GETOWN, F_SETFD, F_SETFL, and
F_SETOWN

fdatasync, fsync (Section 3.13) | implementation defined

fstat (Section 4.2) some stat structure members supported, but how left up to
the implemencation

ftruncate (Section 4.13) unspecified

getmsg, getpmsg (Section 14.4) works if sockets are implemented with STREAMS (i.e., on
Solaris)

ioctl (Section 3.15) some commands work, depending on underlying device
driver

1seek (Section 3.6) implementation defined (usually fails with errno set to
ESPIPE)

mmap (Section 14.9) unspecified

poll (Section 14.5.2) works as expected

putmsg, putpmsg (Section 14.4) works if sockets are implemented with STREAMS (i.e., on
Solaris)

read (Section 3.7) and readv equivalent to recv (Section 16.5) without any flags

(Section 14.7)
select (Section 14.5.1) works as expected
write (Section 3.8) and writev equivalent to send (Section 16.5) without any flags
(Section 14.7)

Figure 16.3 How file descriptor functions act with sockets

Communication on a socket is bidirectional. We can disable I/O on a socket with
the shutdown function.

#include <sys/socket.h>
int shutdown (int sockfd, int how) ;

Returns: 0 if OK, -1 on error

If ow is SHUT_RD, then reading from the socket is disabled. If how is SHUT WR, then we
can’t use the socket for transmitting data. We can use SHUT RDWR to disable both data
transmission and reception.

Given that we can close a socket, why is shutdown needed? There are several
reasons. First, close will deallocate the network endpoint only when the last active
reference is closed. This means that if we duplicate the socket (with dup, for example),

Section 16.3 Addressing 549

16.3

the socket won't be deallocated until we close the last file descriptor referring to it. The
shutdown function allows us to deactivate a socket independently of the number of
active file descriptors referencing it. Second, it is sometimes convenient to shut a socket
down in one direction only. For example, we can shut a socket down for writing if we
want the process we are communicating with to be able to determine when we are done
transmitting data, while still allowing us to use the socket to receive data sent to us by
the process.

Addressing

In the previous section, we learned how to create and destroy a socket. Before we learn
to do something useful with a socket, we need to learn how to identify the process that
we want to communicate with. Identifying the process has two components. The
machine’s network address helps us identify the computer on the network we wish to
contact, and the service helps us identify the particular process on the computer.

16.3.1 Byte Ordering

When communicating with processes running on the same computer, we generally
don’t have to worry about byte ordering. The byte order is a characteristic of the
processor architecture, dictating how bytes are ordered within larger data types, such as
integers. Figure 16.4 shows how the bytes within a 32-bit integer are numbered.

big-endian

n §n+1 “n+2 n+3

MSB LSB

little-endian

n+3 n+2 n+l - n

MSB LSB

Figure 16.4 Byte order in a 32-bit integer

If the processor architecture supports big-endian byte order, then the highest byte
address occurs in the least significant byte (LSB). Little-endian byte order is the opposite:
the least significant byte contains the lowest byte address. Note that regardless of the
byte ordering, the most significant byte (MSB) is always on the left, and the least
significant byte is always on the right. Thus, if we were to assign a 32-bit integer the
value 0x04030201, the most significant byte would contain 4, and the least significant
byte would contain 1, regardless of the byte ordering. If we were then to cast a

550 Network IPC: Sockets Chapter 16

character pointer (cp) to the address of the integer, we would see a difference from the
byte ordering. On a little-endian processor, cp [0] would refer to the least significant
byte and contain 1; cp[3] would refer to the most significant byte and contain 4.
Compare that to a big-endian processor, where cp [0] would contain 4, referring to the
most significant byte, and cp [3] would contain 1, referring to the least significant byte.
Figure 16.5 summarizes the byte ordering for the four platforms discussed in this text.

Operating system Processor architecture Byie order
FreeBSD 5.2.1 intel Pentium little-endian
Linux 2.4.22 I Intel Pentium . little-endian
MacOSX103 | PowerPC big-endian
Solaris 9 } Sun SPARC big-endian

Figure 16.5 Byte order for test platforms

To confuse matters further, some processors can be configured for either little-endian or
big-endian operation.

Network protocols specify a byte ordering so that heterogeneous computer systems
can exchange protocol information without confusing the byte ordering. The TCP/IP.
protocol suite uses big-endian byte order. The byte ordering becomes visible to
applications when they exchange formatted data. With TCP/IP, addresses are
presented in network byte order, so applications sometimes need to translate them
between the processor’s byte order and the network byte order. This is common when
printing an address in a human-readable form, for example.

Four common functions are provided to convert between the processor byte order
and the network byte order for TCP/IP applications.

#include <arpa/inet.h>
uint32 t htonl (uint32_t hostint32) ;
Returns: 32-bit integer in network byte order
uintl6_t htons (uintlé_t hostint16) ;
Returns: 16-bit integer in network byte order
uint32 t ntohl (uint32_t netint32);
Returns: 32-bit integer in host byte order

uint16_t ntohs(uintlé_t netintlo) ;

Returns: 16-bit integer in host byte order

The h is for “host” byte order, and the n is for “network” byte order. The 1 is for “long”
(i.e., 4-byte) integer, and the s is for “short” (i.e., 2-byte) integer. These four functions
are defined in <arpa/inet.h>, although some older systems define them in
<netinet/in.h>.

Section 16.3 Addressing 551

16.3.2 Address Formats

An address identifies a socket endpoint in a particular communication domain. The
address format is specific to the particular domain. So that addresses with different
formats can be passed to the socket functions, the addresses are cast to a generic
sockaddr address structure:

struct sockaddr {
sa_family t sa_family; /* address family */
char sa_datall; /* variable-length address */

}i
Implementations are free to add additional members and define a size for the sa_data

member. For example, on Linux, the structure is defined as

struct sockaddr {
sa_family t sa_family; /* address family */
char sa_datal14]; /* variable-length address */

}i
But on FreeBSD, the structure is defined as

struct sockaddr {

unsigned char sa_len; /* total length */
sa_family t sa_family; /* address family */
char sa_data[l14]; /* variable-length address */

}i

Internet addresses are defined in <netinet/in.h>. In the IPv4 Internet domain
(AF_INET), a socket address is represented by a sockaddr_in structure:

struct in_addr {

in_addr_t s_addr; /* IPv4 address */
bi
struct sockaddr_in {
sa_family t sin_ family; /* address family */
in_port_t sin_port; /* port number */
struct in addr sin_addr; /* IPv4 address */

}i
The in_port_t data type is defined to be a uint16_t. The in_addr_t data type is
defined to be a uint32_t. These integer data types specify the number of bits in the
data type and are defined in <stdint.h>.

In contrast to the AF_INET domain, the IPv6 Internet domain (AF_INETS6) socket
address is represented by a sockaddr_iné structure:

struct iné_addr {
uint8_t s6_addr[16]; /* IPvé address */

}i

552

Network IPC: Sockets Chapter 16

struct sockaddr iné {

sa_family t siné_family; /* address family */

in port_t siné_port; /* port number */

uint32_t siné_flowinfo; /* traffic class and flow info */
struct iné_ addr siné_addr; /* IPvé address */

uint32_t siné_scope id; /* set of interfaces for scope */

i

These are the definitions required by the Single UNIX Specification. Individual
implementations are free to add additional fields. For example, on Linux, the
sockaddr_in structure is defined as

struct sockaddr in {

sa_family t sin_family; /* address family */
in_port_t sin_port; /* port number */
struct in_addr sin_addr; /* IPv4 address */
unsigned char sin_zero(8]; /* filler */

}i

where the sin_zero member is a filler field that should be set to all-zero values.

Note that although the sockaddr in and sockaddr_iné structures are quite
different, they are both passed to the socket routines cast to a sockaddr structure. In
Section 17.3, we will see that the structure of a UNIX domain socket address is different
from both of the Internet domain socket address formats.

It is sometimes necessary to print an address in a format that is understandable by a
person instead of a computer. The BSD networking software included the inet_addr
and inet_ntoa functions to convert between the binary address format and a string in
dotted-decimal notation (a.b.c.d). These functions, however, work only with IPv4
addresses. Two new functions—inet ntop and inet_pton-——support similar
functionality and work with both IPv4 and IPv6 addresses.

#include <arpa/inet.h>

const char *inet ntop (int domain, const void *restrict addr,
char *restrict str, socklen_t size);

Returns: pointer to address string on success, NULL on error

int inet_pton(int domain, const char *restrict str,
void *restrict addr);

Returns: 1 on success, 0 if the format is invalid, or —1 on error J

The inet_ntop function converts a binary address in network byte order into a
text string; inet_pton converts a text string into a binary address in network byte
order. Only two domain values are supported: AF_INET and AF_INETS.

For inet_ntop, the size parameter specifies the size of the buffer (str) to hold the
text string. Two constants are defined to make our job easier: INET_ADDRSTRLEN is
large enough to hold a text string representing an IPv4 address, and
INET6_ ADDRSTRLEN is large enough to hold a text string representing an IPv6 address.
For inet_pton, the addr buffer needs to be large enough to hold a 32-bit address if
domain is AF_INET or large enough to hold a 128-bit address if domain is AF_INET6.

Section 16.3 Addressing 553

16.3.3 Address Lookup

Ideally, an application won't have to be aware of the internal structure of a socket
address. If an application simply passes socket addresses around as sockaddr
structures and doesn’t rely on any protocol-specific features, then the application will
work with many different protocols that provide the same type of service.

Historically, the BSD networking software has provided interfaces to access the
various network configuration information. In Section 6.7, we briefly discussed the
networking data files and the functions used to access them. In this section, we discuss
them in a little more detail and introduce the newer functions used to look up
addressing information.

The network configuration information returned by these functions can be kept in a
number of places. They can be kept in static files (/etc/hosts, /etc/services,
etc.), or they can be managed by a name service, such as DNS (Domain Name System)
or NIS (Network Information Service). Regardless of where the information is kept, the
same functions can be used to access it.

The hosts known by a given computer system are found by calling gethostent.

#include <netdb.h>
struct hostent *gethostent (void);
Returns: pointer if OK, NULL on error

void sethostent (int stayopen) ;

void endhostent (void) ;

If the host database file isn’t already open, gethostent will open it. The gethostent
function returns the next entry in the file. The sethostent function will open the file
or rewind it if it is already open. The endhostent function will close the file.

When gethostent returns, we get a pointer to a hostent structure which might
point to a static data buffer that is overwritten each time we call gethostent. The
hostent structure is defined to have at least the following members:

struct hostent {

char *h_name; /* name of host */

char **h aliases; /* pointer to alternate host name array */
int h_addrtype; /* address type */

int h_length; /* length in bytes of address */

char **h_addr_list; /* pointer to array of network addresses */

}i .
The addresses returned are in network byte order.
Two additional functions—gethostbyname and gethos tbyaddr—originally

were included with the hostent functions, but are now considered to be obsolete.
We'll see replacements for them shortly.

554 Network IPC: Sockets Chapter 16

We can get network names and numbers with a similar set of interfaces.

#include <netdb.h>
struct netent *getnetbyaddr (uint32_t nef, int fype);
struct netent *getnetbyname (const char *name) ;
struct netent *getnetent (void);
All return: pointer if OK, NULL on error
void setnetent (int stayopen) ;

void endnetent (void) ;

The netent structure contains at least the following fields:

struct netent {

char *n_name; /* network name */

char **n_aliases; /* alternate network name array pointer */
int n_addrtype; /* address type */

uint32_t =n_net; /* network number */

b
The network number is returned in network byte order. The address type is one of the

address family constants (AF_INET, for example).
We can map between protocol names and numbers with the following functions.

#include <netdb.h>
struct protoent *getprotobyname (const char *name) ;
struct protoent *getprotobynumber (int proto) ;
struct protoent *getprotoent (void);
All return: pointer if OK, NULL on error

void setprotoent (int stayopen) ;

void endprotoent (void) ;

The protoent structure as defined by POSIX.1 has at least the following members:

struct protoent {

char *p_ name; /* protocol name */
char **p aliases; /* pointer to alternate protocol name array */

int p_proto; /* protocol number */

}i
Services are represented by the port number portion of the address. Each service is
offered on a unique, well-known port number. We can map a service name to a port

Section 16.3 Addressing 555

number with getservbyname, map a port number to a service name with
getservbyport, or scan the services database sequentially with getservent.

#include <netdb.h>
struct servent *getservbyname (const char *mame, const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent (void);
All return: pointer if OK, NULL on error

void setservent (int stayopen) ;

void endservent (void) ;

The servent structure is defined to have at least the following members:

struct servent {

char *s_name; /* service name */

char **s_aliases; /* pointer to alternate service name array */
int s_port; /* port number */

char *s_proto; /* name of protocol */

}i

POSIX.1 defines several new functions to allow an application to map from a host
name and a service name to an address and vice versa. These functions replace the
older gethostbyname and gethostbyaddr functions.

The getaddrinfo function allows us to map a host name and a service name to an
address.

#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *restrict host,
) const char *restrict service,
const struct addrinfo *restrict hint,
struct addrinfo **restrict res);

Returns: 0 if OK, nonzero error code on error

void freeaddrinfo (struct addrinfo *ai);

We need to provide the host name, the service name, or both. If we provide only one
name, the other should be a null pointer. The host name can be either a node name or
the host address in dotted-decimal notation.

The getaddrinfo function returns a linked list of addrinfo structures. We can
use freeaddrinfo to free one or more of these structures, depending on how many
structures are linked together using the ai_next field.

556

Network IPC: Sockets Chapter 16

The addrinfo structure is defined to include at least the following members:

struct addrinfo {

int ai_flags; /* customize behavior */

int ai_family; /* address family */

int ai_socktype; /* socket type */

int ai protocol; /* protocol */

socklen t ai_addrlen; /* length in bytes of address */
struct sockaddr *ai_addr; /* address */

char *ai canonname; /* canonical name of host */
struct addrinfo *ai next; /* next in list */

}i

We can supply an optional hint to select addresses that meet certain criteria. The
hint is a template used for filtering addresses and uses only the ai_ family,
ai_flags, ai_protocol, and ai_socktype fields. The remaining integer fields
must be set to 0, and the pointer fields must be null. Figure 16.6 summarizes the flags
we can use in the ai_flags field to customize how addresses and names are treated.

Flag Description
AI_ADDRCONFIG Query for whichever address type (IPv4 or IPv6) is configured.
AI_ALL Look for both IPv4 and IPv6 addresses (used only with AI_V4MAPPED).
AI_CANONNAME Request a canonical name (as opposed to an alias).

AI_NUMERICHOST | Return the host address in numeric format.

AI_NUMERICSERV | Return the service as a port number.

AI_PASSIVE Socket address is intended to be bound for listening.

AI_V4MAPPED If no IPv6 addresses are found, return IPv4 addresses mapped in IPv6 format.

Figure 16.6 Flags for addrinfo structure

If getaddrinfo fails, we can’t use perror or strerror to generate an error
message. Instead, we need to call gai_strerror to convert the error code returned
into an error message.

#include <netdb.h>
const char *gai_strerror (int error) ;

Returns: a pointer to a string describing the error

The getnameinfo function converts an address into a host name and a service
name.

#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *restrict addr,
socklen_t alen, char *restrict host,
socklen_t hostlen, char *restrict service,
socklen_t servlen, unsigned int flags) ;

Returns: 0 if OK, nonzero on error

Section 16.3 Addressing 557

The socket address (addr) is translated into a host name and a service name. If host is
non-null, it points to a buffer hostlen bytes long that will be used to return the host
name. Similarly, if service is non-null, it points to a buffer servlen bytes long that will be
used to return the service name.

The flags argument gives us some control over how the translation is done.
Figure 16.7 summarizes the supported flags.

Flag Description
NI_DGRAM The service is datagram based instead of stream based.
NI_NAMEREQD If the host name can’t be found, treat this as an error.
NI_NOFQDN Return only the node name portion of the fully-qualified domain

name for local hosts.

NI_NUMERICHOST | Return the numeric form of the host address instead of the name.
NI_NUMERICSERV | Return the numeric form of the service address (i.e., the port
number) instead of the name.

Figure 16.7 Flags for the getnameinfo function

Example

Figure 16.8 illustrates the use of the getaddrinfo function.

#include "apue.h"

#include <netdb.h>

#include <arpa/inet.h>

#if defined(BSD) || defined (MACOS)
#include <sys/socket.h>

#include <netinet/in.h>

#endif

void
print_family(struct addrinfo *aip)
{
printf (" family ");
switch (aip-»>al family) {
case AF_INET:
printf ("inet");
break;
case AF_INET6:
printf ("ineté") ;
break;
case AF_UNIX:
printf ("unix");
break;
case AF_UNSPEC:
printf ("unspecified");
break;
default:
printf ("unknown") ;
}

558 Network IPC: Sockets Chapter 16

}

void
print_type(struct addrinfo *aip)

printf (" type ");

switch (aip-»>ai_socktype) {

case SOCK_STREAM:
printf ("stream") ;
break;

case SOCK_DGRAM:
printf ("datagram") ;
break;

case SOCK_SEQPACKET:
printf ("segpacket") ;
break;

case SOCK_RAW:
printf ("raw") ;

break;
default:
printf ("unknown (%d)", aip->ai_socktype) ;
}
}
void

print_protocol (struct addrinfo *aip)

printf (" protocol ");

switch (aip->ai_protocol) {

case 0:
printf ("default") ;
break;

case IPPROTO_TCP:
printf ("TCP") ;
break;

Ccase IPPROTO_UDP:
printf ("UDP") ;
break;

case IPPROTO_RAW:
printf ("raw") ;

break;
default:
printf ("unknown (%d)", aip->ai_protocol) ;
}
}
void

print_flags(struct addrinfo *aip)
{
printf ("flags");
if (aip->ai_flags == 0) {
printf (" 0");

Section 16.3

Addressing

559

} else {
if (aip-»ai_flags & AI_PASSIVE)
printf (" passive");
if (aip-»ai_flags & AI_CANONNAME)
printf (" canon");
if (aip->ai_flags & AI_NUMERICHOST)
printf (" numhost");
#if defined(AI_NUMERICSERV)
if (aip-»>ai_flags & AI_NUMERICSERV)
printf (" numserv");
#endif
#if defined(AI V4MAPPED)
if (aip->ai_flags & AI_V4MAPPED)
printf (" v4mapped") ;
#endif
#if defined(AI_ALL)
if (aip-»ai_flags & AI_ALL)
printf (" all");
#endif

}
}
int

main(int argc, char *argv(l)

{

struct addrinfo *ailist, *aip;

struct addrinfo hint;

struct sockaddr_in *sinp;

const char *addr;

int err;

char abuf [INET__ADDRSTRLEN] ;
if (argc != 3)

err_quit("usage: %s nodename service", argv(0]);
hint.ai_flags = AI_CANONNAME;
hint.ai_family = 0;
hint.ai_socktype = 0;
hint.aiﬁprotocolﬁ= 0
hint.ai_addrlen = 0;
hint.ai_canonname = NULL;
hint.ai_addr = NULL;
hint.ai next = NULL;

’

if ((er; = getaddrinfo(argv(l], argv(2], &hint, &ailist)) != 0)

err_quit ("getaddrinfo error: %s", gai_strerror (err)) ;
for (aip = ailist; aip != NULL; aip = aip->ai_next) {

print_flags(aip) ;

print_family (aip);

print_type (aip);

print_protocol (aip);

printf ("\n\thost %s", aip->ai_canonname?aip->ai_canonname:"-");

if (aip->ai_family == AF_INET) {

560 Network IPC: Sockets Chapter 16

sinp = (struct sockaddr_in *)aip->ai_addr;
addr = inet_ntop (AF_INET, &sinp->sin_addr, abuf,
INET_ADDRSTRLEN) ;
printf (" address %s", addr?addr:'"unknown");
printf (" port %d", ntohs(sinp->sin port));
}
printf ("\n");

}

exit (0);

Figure 16.8 Print host and service information

This program illustrates the use of the getaddrinfo function. If multiple protocols
provide the given service for the given host, the program will print more than one entry.
In this example, we print out the address information only for the protocols that work
with IPv4 (ai_family equals AF_INET). If we wanted to restrict the output to the
AF_INET protocol family, we could set the ai family field in the hint.

When we run the program on one of the test systems, we get

$./a.out harry nfs

flags canon family inet type stream protocol TCP
host harry address 192.168.1.105 port 2049

flags canon family inet type datagram protocol UDP

host harry address 192.168.1.105 port 2049 o

16.3.4 Associating Addresses with Sockets

The address associated with a client’s socket is of little interest, and we can let the
system choose a default address for us. For a server, however, we need to associate a
well-known address with the server’s socket on which client requests will arrive.
Clients need a way to discover the address to use to contact a server, and the simplest
scheme is for a server to reserve an address and register it in /etc/services or with a
name service.

We use the bind function to associate an address with a socket.

#include <sys/socket.h>
int bind(int sockfd, const struct sockaddr *addr, socklen_t len);

Returns: 0 if OK, -1 on error

There are several restrictions on the address we can use:
* The address we specify must be valid for the machine on which the process is
running; we can’t specify an address belonging to some other machine.

* The address must match the format supported by the address family we used to
create the socket. :

Section 16.4 Connection Establishment 561

16.4

¢ The port number in the address cannot be less than 1,024 unless the process has
the appropriate privilege (i.e., is the superuser).

e Usually, only one socket endpoint can be bound to a given address, although
some protocols allow duplicate bindings.

For the Internet domain, if we specify the special IP address INADDR_ANY, the socket
endpoint will be bound to all the system’s network interfaces. This means that we can
receive packets from any of the network interface cards installed in the system. We'll
see in the next section that the system will choose an address and bind it to our socket
for us if we call connect or 1isten without first binding an address to the socket.

We can use the get sockname function to discover the address bound to a socket.

#include <sys/socket.h>

int getsockname (int sockfd, struct sockaddr *restrict addr,
socklen t *restrict alenp);

Returns: 0 if OK, -1 on error

Before calling get sockname, we set alenp to point to an integer containing the size of
the sockaddr buffer. On return, the integer is set to the size of the address returned. If
the address won't fit in the buffer provided, the address is silently truncated. If no
address is currently bound to the socket, the results are undefined.

If the socket is connected to a peer, we can find out the peer’s address by calling the
getpeername function.

#include <sys/socket.h>

int getpeername (int sockfd, struct sockaddr *restrict addr,
socklen_t *restrict alenp);

Returns: 0 if OK, -1 on error

Other than returning the peer’s address, the getpeername function is identical to the
getsockname function.

Connection Establishment

If we're dealing with a connection-oriented network service (SOCK_STREAM or
SOCK__SEQPACKET), then before we can exchange data, we need to create a connection
between the socket of the process requesting the service (the client) and the process
providing the service (the server). We use the connect function to create a connection.

#include <sys/socket.h>
int connect (int sockfd, conmst struct sockaddr *addr, socklen_t len);

Returns: 0 if OK, -1 on error

562 Network IPC: Sockets Chapter 16

The address we specify with connect is the address of the server with which we wish
to communicate. If sockfd is not bound to an address, connect will bind a default
address for the caller.

When we try to connect to a server, the connect request might fail for several
reasons. The machine to which we are trying to connect must be up and running, the
server must be bound to the address we are trying to contact, and there must be room in
the server’s pending connect queue (we’ll learn more about this shortly). Thus,
applications must be able to handle connect error returns that might be caused by
transient conditions.

Example

Figure 16.9 shows one way to handle transient connect errors. This is likely with a
server that is running on a heavily loaded system.

#include "apue.h"
#include <sys/socket.h>

#define MAXSLEEP 128
int

connect_retry(int sockfd, const struct sockaddr *addr, socklen t alen)

{

int nsec;
/*
* Try to connect with exponential backoff.
*/
for (nsec = 1; nsec <= MAXSLEEP; nsec <<= 1) {
if (connect (sockfd, addr, alen) == 0) {
/*
* Connection accepted.
*/
return(0) ;
}
/*
* Delay before trying again.
*/

if (nsec. <= MAXSLEEP/2)
sleep (nsec) ;

}

return(-1) ;

Figure 16.9 Connect with retry

This function shows what is known as an exponential backoff algorithm. If the call to
connect fails, the process goes to sleep for a short time and then tries again, increasing
the delay each time through the loop, up to a maximum delay of about 2 minutes. m)

Section 16.4 Connection Establishment 563

If the socket descriptor is in nonblocking mode, which we discuss further in
Section 16.8, connect will return -1 with errno set to the special error code
EINPROGRESS if the connection can’t be established immediately. The application can
use either poll or select to determine when the file descriptor is writable. At this
point, the connection is complete.

The connect function can also be used with a connectionless network service
(sock_DGRAM). This might seem like a contradiction, but it is an optimization instead.
If we call connect with a SOCK_DGRAM socket, the destination address of all messages
we send is set to the address we specified in the connect call, relieving us from having
to provide the address every time we transmit a message. In addition, we will receive
datagrams only from the address we've specified.

A server announces that it is willing to accept connect requests by calling the
listen function.

#include <sys/socket.h>

int listen(int sockfd, int backlog) ;

Returns: 0 if OK, -1 on error

The backlog argument provides a hint to the system of the number of outstanding
connect requests that it should enqueue on behalf of the process. The actual value is
determined by the system, but the upper limit is specified as SOMAXCONN in
<sys/socket .h>.

On Solaris, the SOMBXCONN value in <sys/socket .h> is ignored. The particular maximum
depends on the implementation of each protocol. For TCP, the default is 128.

Once the queue is full, the system will reject additional connect requests, so the
backlog value must be chosen based on the expected load of the server and the amount
of processing it must do to accept a connect request and start the service.

Once a server has called listen, the socket used can receive connect requests. We
use the accept function to retrieve a connect request and convert that into a
connection.

#include <sys/socket.h>

int accept (int sockfd, struct sockaddr *restrict addr,
socklen_t *restrict len);

Returns: file (socket) descriptor if OK, —1 on error

The file descriptor returned by accept is a socket descriptor that is connected to the
client that called connect. This new socket descriptor has the same socket type and
address family as the original socket (sockfd). The original socket passed to accept is
not associated with the connection, but instead remains available to receive additional
connect requests.

If we don’t care about the client’s identity, we can set the addr and len parameters to
NULL. Otherwise, before calling accept, we need to set the addr parameter to a buffer
large enough to hold the address and set the integer pointed to by len to the size of the

564 Network IPC: Sockets

Chapter 16

buffer. On return, accept will fill in the client’s address in the buffer and update the
integer pointed to by len to reflect the size of the address.

If no connect requests are pending, accept will block until one arrives. If sockfd is

in nonblocking mode, accept will return -1 and set errno to either EAGAIN or
EWOULDBLOCK

All four platforms discussed in this text define EAGAIN to be the same as EWOULDBLOCK.

If a server calls accept and no connect request is present, the server will block

until one arrives. Alternatively, a server can use either poll or select to wait for a
connect request to arrive. In this case, a socket with pending connect requests will
appear to be readable.

Example

Figure 16.10 shows a function we can use to allocate and initialize a socket for use by a
server process.

#include "apue.h"
#include <errno.h>
#include <sys/socket.h>

int

initserver (int type, const struct sockaddr *addr, socklen_t alen,

{

int glen)

int fd;
int err = 0;

if ((fd = socket(addr->sa_family, type, 0)) < 0)
return(-1) ;
if (bind(fd, addr, alen) < 0) {
err = errno;
goto errout;
}
if (type == SOCK_STREAM || type == SOCK_SEQPACKET) {
if (listen(fd, qlen) < 0) { ’
err = errno;
goto errout;
}
}

return(fd) ;

errout:

close (fd);
errno = err;
return(-1);

Figure 16.10 Initialize a socket endpoint for use by a server

Section 16.5 Data Transfer 565

16.5

We'll see that TCP has some strange rules regarding address reuse that make this
example inadequate. Figure 16.20 shows a version of this function that bypasses these
rules, solving the major drawback with this version. m]

Data Transfer

Since a socket endpoint is represented as a file descriptor, we can use read and write
to communicate with a socket, as long as it is connected. Recall that a datagram socket
can be “connected” if we set the default peer address using the connect function.
Using read and write with socket descriptors is significant, because it means that we
can pass socket descriptors to functions that were originally designed to work with local
files. We can also arrange to pass the socket descriptors to child processes that execute
programs that know nothing about sockets.

Although we can exchange data using read and write, that is about all we can do
with these two functions. If we want to specify options, receive packets from muitiple
clients, or send out-of-band data, we need to use one of the six socket functions
designed for data transfer.

Three functions are available for sending data, and three are available for receiving
data. First, we'll look at the ones used to send data.

The simplest one is send. It is similar to write, but allows us to specify flags to
change how the data we want to transmit is treated.

#include <sys/socket.h>

seize t send(int sockfd, const void *buf, size t nbytes, int flags) ;

Returns: number of bytes sent if OK, -1 on error

Like write, the socket has to be connected to use send. The buf and nbytes arguments
have the same meaning as they do with write.

Unlike write, however, send supports a fourth flags argument. Two flags are
defined by the Single UNIX Specification, but it is common for implementations to
support additional ones. They are summarized in Figure 16.11.

Flag Description POSIX.1 Fr;ezl?» f D IZ'TIZDZ(Malc O%S X Solga s

MSG_DONTROUTE | Don’t route packet outside of
local network.

MSG_DONTWAIT Enable nonblocking operation J . .
(equivalent to using
O_NONBLOCK).

MSG_EOR This is the end of record if
supported by protocol.

MSG_OOB Send out-of-band data if . 3 . o o
supported by protocol (see
Section 16.7).

Figure 16.11 Flags used with send socket calls

566 Network IPC: Sockets Chapter 16

If send returns success, it doesn’t necessarily mean that the process at the other end
of the connection receives the data. All we are guaranteed is that when send succeeds,
the data has been delivered to the network drivers without error.

With a protocol that supports message boundaries, if we try to send a single
message larger than the maximum supported by the protocol, send will fail with
errno set to EMSGSIZE. With a byte-stream protocol, send will block until the entire
amount of data has been transmitted.

The sendto function is similar to send. The difference is that sendto allows us to
specify a destination address to be used with connectionless sockets.

#include <sys/socket.h>

ssize_t sendto(int sockfd, const void *buf, size_t nbytes, int flags,
const struct sockaddr *destaddr, socklen_t destlen) ;

Returns: number of bytes sent if OK, -1 on error

With a connection-oriented socket, the destination address is ignored, as the destination
is implied by the connection. With a connectionless socket, we can’t use send unless
the destination address is first set by calling connect, so sendto gives us an alternate
way to send a message.

We have one more choice when transmitting data over a socket. We can call
sendmsg with a msghdr structure to specify multiple buffers from which to transmit
data, similar to the writev function (Section 14.7).

#include <sys/socket.h>

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags) ;

Returns: number of bytes sent if OK, ~1 on error

POSIX.1 defines the msghdr structure to have at least the following members:

struct msghdr {

void *msg_name; /* optional address */

socklen t msg_namelen; /* address size .in bytes */
struct iovec *msg_iov; /* array of I/O buffers */

int msg_iovlen; /* number of elements in array */
void *msg_control; /* ancillary data */

socklen_t msg_controllen; /* number of ancillary bytes */
int msg_flags; /* flags for received message */

b
We saw the iovec structure in Section 14.7. We'll see the use of ancillary data in
Section 17.4.2.

The recv function is similar to read, but allows us to specify some options to
control how we receive the data.

Section 16.5 Data Transfer 567

#include <sys/socket.h>
ssize t recv(int sockfd, void *buf, size t nbytes, int flags);

Returns: length of message in bytes,
0 if no messages are available and peer has done an orderly shutdown,
or -1 on error

The flags that can be passed to recv are summarized in Figure 16.12. Only three are
defined by the Single UNIX Specification.

I FreeBSD | Linux [MacOSX| Solaris
Flag Description POSIX.1 521 2422 103 9
MSG_OOB Retrieve out-of-band data if
supported by protocol (see
Section 16.7).
MSG_PEEK Return packet contents without
consuming packet.
MSG_TRUNC Request that the real length of the .
packet be returned, even if it was
truncated.
MSG WAITALL | Wait until all data is available
(SOCK_STREAM only).

Figure 16.12 Flags used with recv socket calls

When we specify the MSG_PEEK flag, we can peek at the next data to be read
without actually consuming it. The next call to read or one of the recv functions will
return the same data we peeked at.

With SOCK_STREAM sockets, we can receive less data than we requested. The
MSG_WAITALL flag inhibits this behavior, preventing recv from returning until all the
data we requested has been received. With SOCK_DGRAM and SOCK_SEQPACKET
sockets, the MSG_WAITALL flag provides no change in behavior, because these
message-based socket types already return an entire message in a single read.

If the sender has called shutdown (Section 16.2) to end transmission, or if the
network protocol supports orderly shutdown by default and the sender has closed the
socket, then recv will return 0 when we have received all the data.

If we are interested in the identity of the sender, we can use recvfrom to obtain the
source address from which the data was sent.

#include <sys/socket.h>

ssize_t recvfrom(int sockfd, void *restrict buf, size_t len, int flags,
struct sockaddr *restrict addr,
socklen t *restrict addrlen);

Returns: length of message in bytes,
0 if no messages are available and peer has done an orderly shutdown,
or -1 on error

568 Network IPC: Sockets Chapter 16

If addr is non-null, it will contain the address of the socket endpoint from which the data
was sent. When calling recvfrom, we need to set the addrlen parameter to point to an
integer containing the size in bytes of the socket buffer to which addr points. On return,
the integer is set to the actual size of the address in bytes.

Because it allows us to retrieve the address of the sender, recvfrom is usually used
with connectionless sockets. Otherwise, recvfrom behaves identically to recv.

To receive data into multiple buffers, similar to readv (Section 14.7), or if we want
to receive ancillary data (Section 17.4.2), we can use recvmsg.

#include <sys/socket.h>
ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);
Returns: length of message in bytes,

0 if no messages are available and peer has done an orderly shutdown,
: or -1 on error

The msghdr structure (which we saw used with sendmsg) is used by recvmsg to
specify the input buffers to be used to receive the data. We can set the flags argument to
change the default behavior of recvmsg. On return, the msg flags field of the
msghdr structure is set to indicate various characteristics of the data received. (The
msg_flags field is ignored on entry to recvmsg). The possible values on return from
recvmsg are summarized in Figure 16.13. We'll see an example that uses recvmsg in

Chapter 17.
. FreeBSD | Linux [MacOSX| Solaris
Flag Description POSIX.1 521 2422 103 9
‘MSG_CTRUNC Control data was truncated.
MSG_DONTWAIT | recvmsg was called in o .
nonblocking mode.
MSG_EOR End of record was received. . o . . .
MSG_OOB Out-of-band data was received. U . o . .
MSG_TRUNC Normal data was truncated. . . o o .

Figure 16.13 Flags returned in msg_flags by recvmsg

Example-—Connection-Oriented Client

Figure 16.14 shows a client command that communicates with a server to obtain the
output from a system’s uptime command. We call this service “remote uptime” (or
“ruptime” for short).

#include "apue.h"
#include <netdb.h>
#include <errno.h»>
#include <«sys/socket.h>

#define MAXADDRLEN 256

Section 16.5

Data Transfer

569

#define BUFLEN 128

extern int connect retry(int, const struct sockaddr *, socklen_t);

void
print_uptime (int sockfd)

{

}
int

{

int n;
char buf [BUFLEN] ;

while ((n = recv(sockfd, buf, BUFLEN, 0)) > 0)
write (STDOUT FILENO, buf, n);

if (n < 0)
err_sys("recv error");

main{int argc, char *argv(])

struct addrinfo *ailist, *aip;
struct addrinfo hint;
int sockfd, err;

if (argc != 2)
err_quit ("usage: ruptime hostname");

hint.ai_flags = 0;

hint.ai family = 0;

hint.ai_socktype = SOCK_STREAM;

hint.ai_protocol = 0;

hint.ai_addrlen = 0;

hint.ai_canonname NULL;

hint.ai_addr = NULL;

hint.ai_next = NULL;

if ({err = getaddrinfo(argvil], "ruptime", &hint, gailist)) != 0)
err_quit ("getaddrinfo error: $s", gai_strerror(err));

for (aip = ailist; aip != NULL; aip = aip->ai_next) {

if ((sockfd = socket (aip->ai_family, SOCK_STREAM, 0)) < 0)
err = errno;
if (connect_retry (sockfd, aip-»>ai_addr, aip->ai_addrlen) < 0)
err = errno;
} else {
print_uptime (sockfd) ;
exit (0);
}
})
fprintf (stderr, "can’'t connect to %s: %s\n", argv[l],
strerror (err)) ;
exit (1) ;

{

Figure 16.14 Client command 1o get uptime from server

570 Network IPC: Sockets Chapter 16

This program connects to a server, reads the string sent by the server, and prints the
string on the standard output. Since we're using a SOCK_STREAM socket, we can’t be
guaranteed that we will read the entire string in one call to recv, so we need to repeat
the call until it returns 0.

The getaddrinfo function might return more than one candidate address for us
to use if the server supports multiple network interfaces or multiple network protocols.
We try each one in turn, giving up when we find one that allows us to connect to the
service. We use the connect_retry function from Figure 169 to establish a
connection with the server. o

Example-—Connection-Oriented Server

Figure 16.15 shows the server that provides the upt ime command’s output to the client
program from Figure 16.14.

#include "apue.h"
#include <netdb.h>
#include <errno.hs>
#include <syslog.h>
#include <sys/socket.h>

#define BUFLEN 128
#define QLEN 10

#ifndef HOST_NAME_MAX
#define HOST NAME MAX 256
#endif

extern int initserver (int, struct sockaddr *, socklen_t, int);

void
serve (int sockfd)
{
Ant clfd;
FILE *fp;
char buf [BUFLEN] ;

for (;;) {
clfd = accept (sockfd, NULL, NULL);
if (clfd < 0) {
syslog (LOG_ERR, "ruptimed: accept error: %s",
strerror (errno)) ;

exit (1) ;

}

if ((fp = popen("/usr/bin/uptime", "r")) == NULL) {
sprintf (buf, "error: $s\n", strerror (errno)) ;
send (clfd, buf, strlen(buf), 0);

} else {
while (fgets(buf, BUFLEN, fp) != NULL)

send(clfd, buf, strlen(buf), 0);

Section 16.5 Data Transfer 571

pclose (fp);
close (clfd);

}

int

main (int argc, char *argv(l)

{
struct addrinfo *ailist, *aip;
struct addrinfo hint;

int sockfd, err, n;
char *host;
if (argc != 1)

err quit("usage: ruptimed");
$ifdef _SC_HOST_ NAME_MAX
n = sysconf (_SC_HOST NAME_MAX) ;
if (n < 0) /* best guess */
#endif
n = HOST NAME_MAX;
host = malloc(n);
if (host == NULL)
err_sys("malloc error");
if (gethostname (host, n) < 0)
err_sys ("gethostname error") ;
daemonize ("ruptimed") ;
hint.ai_flags = AI_CANONNAME;
hint.ai_family = 0;
hint.ai_socktype = SOCK_STREAM;
hint.ai_protocol = 0;
hint.ai_addrlen = 0;
hint.ai_canonname = NULL;
hint.ai_addr = NULL;
hint.ai_next = NULL;
if ((err = getaddrinfo(host, "ruptime", shint, &ailist)) != 0) {
syslog (LOG_ERR, "ruptimed: getaddrinfo error: %s",
gai_strerror(err));
exit (1) ;
}
for (aip = ailist; aip != NULL; aip = aip->ai_next) {
if ((sockfd = initserver (SOCK_STREAM, aip->ai_addr,
aip->ai_addrlen, QLEN)) >= 0) {
serve (sockfd) ;
exit (0);

exit (1) ;

Figure 16.15 Server program to provide system uptime

572 Network IPC: Sockets Chapter 16

To find out its address, the server needs to get the name of the host on which it is
running. Some systems don’t define the _SC_HOST_NAME MAX constant, so we use
HOST_NAME_MAX in this case. If the system 1 doesn’t define HOST_NAME_MAX, we define
it ourselves. POSIX.1 states that the minimum value for the host name is 255 bytes, not
including the terminating null, so we define HOST NAME MAX to be 256 to include the
terminating null.

The server gets the host name by calling gethostname and looks up the address
for the remote uptime service. Multiple addresses can be returned, but we simply
choose the first one for which we can establish a passive socket endpoint. Handling
multiple addresses is left as an exercise.

We use the initserver function from Figure 16.10 to initialize the socket endpoint
on which we will wait for connect requests to arrive. (Actually, we use the version from
Figure 16.20; we’ll see why when we discuss socket options in Section 16.6.) O

Example+Alternate Connection-Oriented Server

Previously, we stated that using file descriptors to access sockets was significant,
because it allowed programs that knew nothing about networking to be used in a
networked environment. The version of the server shown in Figure 16.16 illustrates this
point. Instead of reading the output of the uptime command and sending it to the
client, the server arranges to have the standard output and standard error of the
uptime command be the socket endpoint connected to the client.

#include "apue.h"
#include <netdb.h>
#include <errno.h>
#include <syslog.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <sys/wait.h>

#define QLEN 10

#ifndef HOST NAME MAX
#define HOST NAME_MAX 256
#endif

extern int initserver(int, struct sockaddr *, socklen t, int);

void

serve (int sockfd)

{
int clfd, status;
pid_t pid;
for (;;) {

clfd = accept(sockfd, NULL, NULL);
if (clfd < 0) {
syslog (LOG_ERR, "ruptimed: accept error: $s",
strerror (errno)) ;

Section 16.5 ‘ Data Transfer 573

exit (1) ;
}
if ((pid = fork()) < 0) {
syslog (LOG_ERR, "ruptimed: fork error: %s",
strerror (errno)) ;
exit (1) ;
} else if (pid == 0) { /* child */
/*
* The parent called daemonize (Figure 13.1), so
* STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO
* are already open to /dev/null. Thus, the call to
* close doesn’t need to be protected by checks that
* clfd isn‘t already equal to one of these values.

*/
if (dup2(clfd, STDOUT_FILENO) != STDOUT_FILENO ||
dup2 (c1fd, STDERR_FILENO) != STDERR_FILENO) {
syslog (LOG_ERR, "ruptimed: unexpected error");
exit (1) ;
}
close(clfd);
execl ("/usr/bin/uptime", "uptime", (char *)0);

syslog (LOG_ERR, "ruptimed: unexpected return from exec: %s",
strerror (errno)) ;

} else { /* parent */
close(clfd);
waitpid(pid, &status, 0);
}
}
}
int

main(int argc, char *argvl[l)

{
struct addrinfo *ailist, *aip;
struct addrinfo hint;

int sockfd, err, n;
char *host;
if (argc != 1)

err quit ("usage: ruptimed") ;
#ifdef SC_HOST_NAME_MAX
n = sysconf (_SC_HOST_NAME_MAX) ;
if (n < 0) /* best guess */
#endif
n = HOST NAME_MAX;
host = malloc(n);
if (host == NULL)
err_sys("malloc error");
if (gethostname (host, n) < 0)
err_sys ("gethostname error");
daemonize ("ruptimed") ;

574

Network IPC: Sockets Chapter 16

hint.ai flags = AI_CANONNAME;
hint.ai_family = 0;
hint.ai_socktype = SOCK_STREAM;
hint.ai protocol = 0;
hint.ai_addrlen = 0;
hint.ai_canonname = NULL;
hint.ai_addr = NULL;
hint.ai_next = NULL;
if ((err = getaddrinfo(host, "ruptime", s&hint, &ailist)) != 0) {
syslog (LOG_ERR, "ruptimed: getaddrinfo error: $s",
gai_strerror(err));
exit (1) ;
}
for (aip = ailist; aip != NULL; aip = aip-»>ai next) {
if ((sockfd = initserver (SOCK_STREAM, aip->ai_addr,
aip->ai_addrlen, QLEN)) »>= 0) {
serve (sockfd) ;
exit (0);
}
}

exit (1) ;

Figure 16.16 Server program illustrating command writing directly to socket

Instead of using popen to run the uptime command and reading the output from the
pipe connected to the command’s standard output, we use fork to create a child
process and then use dup2 to arrange that the child’s copy of STDIN_FILENO is open to
/dev/null and that both STDOUT_FILENO and STDERR_FILENO are open to the
socket endpoint. When we execute uptime, the command writes the results to its
standard output, which is connected to the socket, and the data is sent back to the
ruptime client command.

The parent can safely close the file descriptor connected to the client, because the
child still has it open. The parent waits for the child to complete before proceeding, so
that the child doesn’t become a zombie. Since it shouldn't take too long to run the
uptime command, the parent can afford to wait for the child to exit before accepting
the next connect request. This strategy might not be appropriate if the child takes a long
time, however. a

The previous examples have used connection-oriented sockets. But how do we
choose the appropriate type? When do we use a connection-oriented socket, and when
do we use a connectionless socket? The answer depends on how much work we want
to do and what kind of tolerance we have for errors.

With a connectionless socket, packets can arrive out of order, so if we can’t fit all our
data in one packet, we will have to worry about ordering in our application. The
maximum packet size is a characteristic of the communication protocol. Also, with a
connectionless socket, the packets can be lost. If our application can't tolerate this loss,
we should use connection-oriented sockets.

Section 16.5 Data Transfer 575

Tolerating packet loss means that we have two choices. If we intend to have reliable
communication with our peer, we have to number our packets and request
retransmission from the peer application when we detect a missing packet. We will also
have to identify duplicate packets and discard them, since a packet might be delayed
and appear to be lost, but show up after we have requested retransmission.

The other choice we have is to deal with the error by letting the user retry the
command. For simple applications, this might be adequate, but for complex
applications, this usually isn’t a viable alternative, so it is generally better to use
connection-oriented sockets in this case.

The drawbacks to connection-oriented sockets are that more work and time are
needed to establish a connection, and each connection consumes more resources from
the operating system.

Example—Connectionless Client

The program in Figure 16.17 is a version of the upt ime client command that uses the
datagram socket interface.

#include "apue.h"
#include <netdb.h>
#include <errno.h>
#include <sys/socket.h>

#define BUFLEN 128
#define TIMEOUT 20
void

sigalrm(int signo)

{
}

void
print_uptime (int sockfd, struct addrinfo *aip)
{

int n;

char buf [BUFLEN] ;

buf [0] .= 0;
if (sendto(sockfd, buf, 1, 0, aip->ai_addr, aip->ai_addrlen) < 0)
err_sys("sendto error");
alarm(TIMEOUT) ;
if ((n = recvfrom(sockfd, buf, BUFLEN, 0, NULL, NULL)) < 0) {
if (errno != EINTR)
alarm(0) ;
err_sys("recv erroxr");

alarm(0) ;
write(STDOUTﬁFILENO, buf, n);

576 Network IPC: Sockets Chapter 16

int
main(int argc, char *argv(])

{

struct addrinfo *ailist, *aip;
struct addrinfo hint;

int sockfd, err;
struct sigaction sa;

if (argc != 2)

err_guit ("usage: ruptime hostname") ;

sa.sa_handler = sigalrm;

sa.sa_flags = 0;

sigemptyset (&sa.sa_mask) ;

if (sigaction(SIGALRM, &sa, NULL) < 0)
err sys("sigaction error");

hint.ai_flags = 0;

hint.ai_family = 0;

hint.ai_socktype = SOCK_DGRAM;

hint.ai_protocol = 0;

hint.ai_addrlen = 0;

hint.ai_canonname = NULL;

hint.ai_addr = NULL;

hint.ai_next = NULL;

if ((err = getaddrinfo(argv[l], "ruptime", &hint, &ailist)) != 0)
err_quit ("getaddrinfo error: %s", gai_strerror (err));

for (aip = ailist; aip != NULL; aip = aip->ai_next) {
if ((sockfd = socket(aip->ai_family, SOCK_DGRAM, 0)) < 0) {
err = errno;

} else {
print_uptime (sockfd, aip);
exit (0);
}
}
fprintf (stderr, "can’t contact %s: %s\n", argv[1l], strerror(err));
exit (1) ;

Figure 16.17 Client command using datagram service

The main function for the datagram-based client is similar to the one for the
connection-oriented client, with the addition of installing a signal handler for STGALRM.
We use the alarm function to avoid blocking indefinitely in the call to recvrom.

With the connection-oriented protocol, we needed to connect to the server before
exchanging data. The arrival of the connect request was enough for the server to
determine that it needed to provide service to a client. But with the datagram-based
protocol, we need a way to notify the server that we want it to perform its service on
our behalf. In this example, we simply send the server a 1-byte message. The server
will receive it, get our address from the packet, and use this address to transmit its

